
 DCA and DCA-J

Agilent 86100A/B/C
Wide-Bandwidth Oscilloscope
Programmer’s Guide

2

Notices
© Agilent Technologies, Inc. 2000-2004

No part of this manual may be repro-
duced in any form or by any means
(including electronic storage and
retrieval or translation into a foreign lan-
guage) without prior agreement and writ-
ten consent from Agilent Technologies,
Inc. as governed by United States and
international copyright lays.

Manual Part Number

86100-90065

Edition

First edition, February 2004

Printed in Malaysia

Agilent Technologies, Inc.
Digital Signal Analysis Division
1400 Fountaingrove Parkway
Santa Rosa, CA 95403, USA

Warranty

The material contained in this document
is provided “as is,” and is subject to being
changed, without notice, in future edi-
tions. Further, to the maximum extent
permitted by applicable law, Agilent dis-
claims all warranties, either express or
implied, with regard to this manual and
any information contained herein, includ-
ing but not limited to the implied warran-
ties of merchantability and fitness for a
particular purpose. Agilent shall not be
liable for errors or for incidental or conse-
quential damages in connection with the
furnishing, use, or performance of this
document or of any information con-
tained herein. Should Agilent and the
user have a separate written agreement
with warranty terms covering the mate-
rial in this document that conflict with
these terms, the warranty terms in the
separate agreement shall control.

Technology Licenses

The hardware and/or software described
in this document are furnished under a
license and may be used or copied only in
accordance with the terms of such
license.

LZW compression/decompression:
Licensed under U.S. Patent No. 4,558,302
and foreign counterparts. The purchase
or use of LZW graphics capability in a
licensed product does not authorize or
permit an end user to use any other prod-
uct or perform any other method or activ-
ity involving use of LZW unless the end
user is separately licensed in writing by
Unisys.

Restricted Rights Legend

If software is for use in the performance
of a U.S. Government prime contract or
subcontract, Software is delivered and
licensed as “Commercial computer soft-
ware” as defined in DFAR 252.227-7014
(June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted
computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent
agency regulation or contract clause. Use,
duplication or disclosure of Software is
subject to Agilent Technologies’ standard
commercial license terms, and non-DOD

Departments and Agencies of the U.S.
Government will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Gov-
ernment users will receive no greater
than Limited Rights as defined in FAR
52.227-14 (June 1987) or DFAR 252.227-
7015 (b)(2) (November 1995), as appli-
cable in any technical data.

Safety Notices

CAUTION
Caution denotes a hazard. It calls attention
to a procedure which, if not correctly per-
formed or adhered to, could result in
damage to or destruction of the product.
Do not proceed beyond a caution sign
until the indicated conditions are fully
understood and met.

WARNING
Warning denotes a hazard. It calls attention
to a procedure which, if not correctly per-
formed or adhered to, could result in
injury or loss of life. Do not proceed
beyond a warning sign until the indicated
conditions are fully understood and met.

Contents

Contents-1

1 Introduction

Getting Started Programming 1-12
Interface Functions 1-17
Status Reporting 1-20
Message Communication and System Functions 1-34
Programming Conventions 1-37
Multiple Databases 1-47
Language Compatibility 1-50
New and Revised Commands 1-56
Commands Unavailable in Jitter Mode 1-58
Error Messages 1-60

2 Sample Programs

Sample Program Structure 2-3
Sample C Programs 2-4
Listings of the Sample Programs 2-20

3 Common Commands

4 Root Level Commands

5 System Commands

6 Acquire Commands

7 Calibration Commands

8 Channel Commands

9 Clock Recovery Commands

10 Disk Commands

11 Display Commands

12 Function Commands

Contents-2

Contents

13 Hardcopy Commands

14 Histogram Commands

15 Limit Test Commands

16 Marker Commands

17 Mask Test Commands

18 Measure Commands

19 TDR/TDT Commands

20 Timebase Commands

21 Trigger Commands

22 Waveform Commands

23 Waveform Memory Commands

1

Getting Started Programming 1-12
Interface Functions 1-17
Status Reporting 1-20
Message Communication and System Functions 1-34
Programming Conventions 1-37
Multiple Databases 1-47
Language Compatibility 1-50
New and Revised Commands 1-56
Commands Unavailable in Jitter Mode 1-58
Error Messages 1-60

Introduction

1-2

Introduction

Introduction

This chapter introduces the basics for remote programming of an analyzer. The pro-
gramming commands in this manual conform to the IEEE 488.2 Standard Digital Inter-
face for Programmable Instrumentation. The programming commands provide the
means of remote control.

Basic operations that you can do with a computer (GPIB controller) and an analyzer
include:

• Set up the analyzer.

• Make measurements.

• Get data (waveform, measurements, configuration) from the analyzer.

• Send information, such as waveforms and configurations, to the analyzer.

Other tasks are accomplished by combining these functions.

.

Communicating

with the Analyzer

Computers communicate with the analyzer by sending and receiving messages over a
remote interface, usually with GPIB programming. Commands for programming nor-
mally appear as ASCII character strings embedded in the output statements of a “host”
language available on your computer. The input commands of the host language are
used to read in responses from the analyzer.

For example, HP BASIC uses the OUTPUT statement for sending commands and que-
ries. After a query is sent, the response is usually read using the HP BASIC ENTER
statement. The ENTER statement passes the value across the bus to the computer and
places it in the designated variable.

For the GPIB interface, messages are placed on the bus using an output command and
passing the device address, program message, and a terminator. Passing the device
address ensures that the program message is sent to the correct GPIB interface and
GPIB device.

This HP BASIC OUTPUT statement sends a command that sets the channel 1 scale
value to 500 mV:

Example Programs are Written in HP BASIC and C

The programming examples for individual commands in this manual are written in HP BASIC and C.

1-3

Introduction

OUTPUT <device address>;":CHANNEL1:SCALE 500E-3"<terminator>

The device address represents the address of the device being programmed. Each of
the other parts of the above statement are explained in the following pages.

Output Command The output command depends entirely on the programming language. Throughout this
book, HP BASIC and ANSI C are used in the examples of individual commands. If you
are using other languages, you will need to find the equivalents of HP BASIC com-
mands like OUTPUT, ENTER, and CLEAR, to convert the examples.

Device Address The location where the device address must be specified depends on the programming
language you are using. In some languages, it may be specified outside the OUTPUT
command. In HP BASIC, it is always specified after the keyword OUTPUT. The exam-
ples in this manual assume that the analyzer and interface card are at GPIB device
address 707. When writing programs, the device address varies according to how the
bus is configured.

Instructions Instructions, both commands and queries, normally appear as strings embedded in a
statement of your host language, such as HP BASIC, Pascal, or C. The only time a
parameter is not meant to be expressed as a string is when the instruction's syntax def-
inition specifies <block data>, such as HP BASIC’s "learnstring" command. There are
only a few instructions that use block data.

Instructions are composed of two main parts:

• The header, which specifies the command or query to be sent.

• The program data, which provides additional information to clarify the meaning
of the instruction.

Instruction

Header

The instruction header is one or more command mnemonics separated by colons (:)
that represent the operation to be performed by the analyzer. See “Programming Con-
ventions” on page 1-37 for more information.

Queries are formed by adding a question mark (?) to the end of the header. Many
instructions can be used as either commands or queries, depending on whether or not
you include the question mark. The command and query forms of an instruction usu-
ally have different program data. Many queries do not use any program data.

Use the Suffix Multiplier Instead

Using "mV" or "V" following the numeric voltage value in some commands will cause
Error 138–Suffix not allowed. Instead, use the convention for the suffix multiplier as described in
“Message Communication and System Functions” on page 1-34.

1-4

Introduction

White Space

(Separator)

White space is used to separate the instruction header from the program data. If the
instruction does not require any program data parameters, you do not need to include
any white space. In this manual, white space is defined as one or more spaces. ASCII
defines a space to be character 32, in decimal.

Program Data Program data is used to clarify the meaning of the command or query. It provides nec-
essary information, such as whether a function should be on or off or which waveform
is to be displayed. Each instruction's syntax definition shows the program data, and the
values they accept. See “Numeric Program Data” on page 1-7 for more information
about general syntax rules and acceptable values.

When there is more than one data parameter, they are separated by commas (,). You
can add spaces around the commas to improve readability.

Header Types There are three types of headers:

• Simple Command headers
• Compound Command headers
• Common Command headers

Simple Command Header

Simple command headers contain a single mnemonic. AUTOSCALE and DIGITIZE are
examples of simple command headers typically used in this analyzer. The syntax is:

<program mnemonic><terminator>

or

OUTPUT 707;”:AUTOSCALE”

When program data must be included with the simple command header (for example,
:DIGITIZE CHAN1), white space is added to separate the data from the header. The
syntax is:

<program mnemonic><separator><program data><terminator>

or

OUTPUT 707;”:DIGITIZE CHANNEL1,FUNCTION2”

Compound Command Header

Compound command headers are a combination of two program mnemonics. The first
mnemonic selects the subsystem, and the second mnemonic selects the function
within that subsystem. The mnemonics within the compound message are separated by
colons. For example:

To execute a single function within a subsystem:

:<subsystem>:<function><separator><program data><terminator>

For example:

1-5

Introduction

OUTPUT 707;”:CHANNEL1:BANDWIDTH HIGH”

Combining Commands in the Same Subsystem

To execute more than one command within the same subsystem, use a semi-colon (;)
to separate the commands:

:<subsystem>:<command><separator><data>;<command><separator><data><terminator>

For example:

:CHANNEL1:DISPLAY ON;BWLIMIT ON

Common Command Header

Common command headers, such as clear status, control the IEEE 488.2 functions
within the analyzer. The syntax is:

*<command header><terminator>

No space or separator is allowed between the asterisk (*) and the command header.
*CLS is an example of a common command header.

Duplicate

Mnemonics

Identical function mnemonics can be used for more than one subsystem. For example,
the function mnemonic RANGE may be used to change the vertical range or to change
the horizontal range.

To set the vertical range of channel 1 to 0.4 volts full scale:

:CHANNEL1:RANGE .4

To set the horizontal time base to 1 second full scale:

:TIMEBASE:RANGE 1

CHANNEL1 and TIMEBASE are subsystem selectors, and determine which range is
being modified.

Query Headers Command headers immediately followed by a question mark (?) are queries. After
receiving a query, the analyzer interrogates the requested subsystem and places the
answer in its output queue. The answer remains in the output queue until it is read or
until another command is issued. When read, the answer is transmitted across the bus
to the designated listener (typically a computer). For example, the query:

:TIMEBASE:RANGE?

places the current time base setting in the output queue.

In HP BASIC, the computer input statement:

ENTER < device address >;Range

1-6

Introduction

passes the value across the bus to the computer and places it in the variable Range.

You can use query commands to find out how the analyzer is currently configured.
They are also used to get results of measurements made by the analyzer.
For example, the command:

:MEASURE:RISETIME?

tells the analyzer to measure the rise time of your waveform and place the result in the
output queue.

The output queue must be read before the next program message is sent. For example,
when you send the query :MEASURE:RISETIME? you must follow it with an input
statement. In HP BASIC, this is usually done with an ENTER statement immediately
followed by a variable name. This statement reads the result of the query and places
the result in a specified variable.

Program Header

Options

You can send program headers using any combination of uppercase or lowercase ASCII
characters. Analyzer responses, however, are always returned in uppercase.

You may send program command and query headers in either long form (complete
spelling), short form (abbreviated spelling), or any combination of long form and short
form. For example:

:TIMEBASE:DELAY 1E-6 is the long form.

:TIM:DEL 1E-6 is the short form.

The rules for the short form syntax are described in “Programming Conventions” on
page 1-37.

Handling Queries Properly

If you send another command or query before reading the result of a query, the output buffer is
cleared and the current response is lost. This also generates a query-interrupted error in the error
queue. If you execute an input statement before you send a query, it will cause the computer to wait
indefinitely.

Using Long Form or Short Form

Programs written in long form are easily read and are almost self-documenting.
The short form syntax conserves the amount of computer memory needed for program storage and
reduces I/O activity.

1-7

Introduction

Character

Program Data

Character program data is used to convey parameter information as alpha or alphanu-
meric strings. For example, the :TIMEBASE:REFERENCE command can be set to left,
center, or right. The character program data in this case may be LEFT, CENTER, or
RIGHT. The command :TIMEBASE:REFERENCE RIGHT sets the time base reference
to right.

The available mnemonics for character program data are always included with the
instruction's syntax definition. Either the long form of commands, or the short form (if
one exists), may be sent. Uppercase and lowercase letters may be mixed freely. When
receiving responses, uppercase letters are used exclusively.

Numeric Program

Data

Some command headers require program data to be expressed numerically. For exam-
ple, :TIMEBASE:RANGE requires the desired full scale range to be expressed numeri-
cally.

For numeric program data, you can use exponential notation or suffix multipliers to
indicate the numeric value. The following numbers are all equal:

28 = 0.28E2 = 280E-1 = 28000m = 0.028K = 28E-3K

When a syntax definition specifies that a number is an integer, it means that the num-
ber should be whole. Any fractional part is ignored and truncated. Numeric data
parameters that accept fractional values are called real numbers. For more information
see “Interface Functions” on page 1-17.

All numbers are expected to be strings of ASCII characters.

• When sending the number 9, you would send a byte representing the ASCII
code for the character “9” (which is 57).

• A three-digit number like 102 would take up three bytes (ASCII codes 49, 48,
and 50). The number of bytes is figured automatically when you include the en-
tire instruction in a string.

Embedded Strings Embedded strings contain groups of alphanumeric characters which are treated as a
unit of data by the analyzer. An example of this is the line of text written to the advi-
sory line of the analyzer with the :SYSTEM:DSP command:

:SYSTEM:DSP ""This is a message.""

You may delimit embedded strings with either single (') or double (") quotation marks.
These strings are case-sensitive, and spaces act as legal characters just like any other
character.

Program Message

Terminator

The program instructions within a data message are executed after the program mes-
sage terminator is received. The terminator may be either a NL (New Line) character,
an EOI (End-Or-Identify) asserted in the GPIB interface, or a combination of the two.
Asserting the EOI sets the EOI control line low on the last byte of the data message.
The NL character is an ASCII linefeed (decimal 10).

1-8

Introduction

Common

Commands within

a Subsystem

Common commands can be received and processed by the analyzer whether they are
sent over the bus as separate program messages or within other program messages. If
you have selected a subsystem, and a common command is received by the analyzer,
the analyzer remains in the selected subsystem. For example, if the program message

":ACQUIRE:AVERAGE ON;*CLS;COUNT 1024"

is received by the analyzer, the analyzer turns averaging on, then clears the status
information without leaving the selected subsystem.

If some other type of command is received within a program message, you must re-
enter the original subsystem after the command. For example, the program message

":ACQUIRE:AVERAGE ON;:AUTOSCALE;:ACQUIRE:AVERAGE:COUNT 1024"

turns averaging on, completes the autoscale operation, then sets the acquire average
count. In this example, :ACQUIRE must be sent again after the AUTOSCALE command
to re-enter the ACQUIRE subsystem and set count.

Selecting Multiple

Subsystems

You can send multiple program commands and program queries for different sub-
systems on the same line by separating each command with a semicolon. The colon fol-
lowing the semicolon lets you enter a new subsystem. For example:

<program mnemonic><data>;:<program mnemonic><data><terminator>

:CHANNEL1:RANGE 0.4;:TIMEBASE:RANGE 1

File Names and

Types

When specifying a file name in a remote command, enclose the name in double quota-
tion marks, such as "filename". If you specify a path, the path should be included in the
quotation marks.

You can use the full path name, a relative path name, or no path. For example, you can
specify:

• a full path name: "D:\User Files\waveforms\channel2.wfm"

• a relative path name: "..\myfile.set" or “.\screen1.jpg”

• a simple file name: "Memory1.txt"

New Line Terminator Functions Like EOS and EOT

The NL (New Line) terminator has the same function as an EOS (End Of String) and EOT (End Of Text)
terminator.

You Can Combine Compound and Simple Commands

Multiple commands may be any combination of compound and simple commands.

1-9

Introduction

All files stored using remote commands have file name extensions.The following table
shows the file name extension used for each file type.

If you do not specify an extension when storing a file, or specify an incorrect extension,
it will be corrected automatically according to the following rules:

• No extension specified: add the extension for the file type.

• Extension does not match file type: retain the filename, (including the current
extension) and add the appropriate extension.

You do not need to use an extension when loading a file if you use the optional destina-
tion parameter. For example, :DISK:LOAD "STM1_OC3",SMASK will automatically add
.msk to the file name.

Table 1-1. File Name Extensions

File Type File Name Extension

Waveform - internal format .wfm

Waveform - text format (Verbose or Y values) .txt

Setup .set

Color grade - Gray Scale .cgs

Jitter Memory .jd

Screen image .bmp, .eps, .gif, .pcx, .ps, .jpg, .tif

Mask .msk, .pcm

TDR/TDT .tdr

Note

For .gif and .tif file formats, this instrument uses LZW compression/decompression
licensed under U.S. patent No 4,558,302 and foreign counterparts. End user should not
modify, copy, or distribute LZW compression/decompression capability.

For .jpg file format, this instrument uses the .jpg software written by the Independent JPEG Group.

1-10

Introduction

The following table shows the rules used when loading a specified file.

File Locations If you don’t specify a directory when storing a file, the location of the file will be based
on the file type. The following table shows the default locations for storing files. On
86100C instruments, files are stored on the D: drive. On 86100A/B instruments, files
are stored on the C: drive.

Table 1-2. Rules for Loading Files

File Name Extension Destination Rule

No extension Not specified Default to internal waveform format; add .wfm
extension

Extension does not match
file type

Not specified Default to internal waveform format; add .wfm
extension

Extension matches file type Not specified Use file name with no alterations; destination is
based on extension file type

No extension Specified Add extension for destination type; default for
waveforms is internal format (.wfm)

Extension does not match
destination file type

Specified Retain file name; add extension for destination
type. Default for waveforms is internal format
(.wfm)

Extension matches
destination file type

Specified Retain file name; destination is as specified

Note

ASCII waveform files can be loaded only if the file name explicitly includes the .txt extension.

Table 1-3. Default File Locations for Storing Files (1 of 2)

File Type Default Location

Waveform - internal format D:\User Files\waveforms

Waveform - text format (Verbose or Y values) D:\User Files\waveforms

Setup D:\User Files\setups

Color Grade - Gray Scale D:\User Files\colorgrade-grayscale

Jitter Memory D:\User Files\jitter data

Screen Image D:\User Files\screen images

Mask C:\Scope\masks (standard masks)
D:\User Files\masks (user-defined masks)

1-11

Introduction

When loading a file, you can specify the full path name, a relative path name, or no path
name. The following table shows the rules for locating files, based on the path speci-
fied.

Standard masks loaded from C:\Scope\masks. Files may be stored to or loaded from
any path external drive or on any mapped network drive.

TDR/TDT calibration data D:\User Files\TDR normalization

Table 1-4. File Locations (Loading Files)

File Name Rule

Full path name Use file name and path specified

Relative path name Full path name is formed relative to the present
working directory, set with the command
:DISK:CDIR. The present working directory can be
read with the query :DISK:PWD?

File name with no preceding path Add the file name to the default path
(D:\User Files) based on the file type.

Table 1-3. Default File Locations for Storing Files (2 of 2)

File Type Default Location

1-12

Introduction
Getting Started Programming

Getting Started Programming

The remainder of this chapter discusses how to set up the analyzer, how to retrieve
setup information and measurement results, how to digitize a waveform, and how to
pass data to the computer. Chapter 18, “Measure Commands” describes sending mea-
surement data to the analyzer.

Initialization To make sure the bus and all appropriate interfaces are in a known state, begin every
program with an initialization statement. For example, HP BASIC provides a CLEAR
command which clears the interface buffer:

CLEAR 707 ! initializes the interface of the analyzer

When you are using GPIB, CLEAR also resets the analyzer's parser. The parser is the
program that reads in the instructions you send.

After clearing the interface, initialize the analyzer to a preset state:

OUTPUT 707;"*RST" ! initializes the analyzer to a preset state

Autoscale

The AUTOSCALE feature of Agilent Technologies digitizing analyzers performs a very
useful function on unknown waveforms by automatically setting up the vertical chan-
nel, time base, and trigger level of the analyzer.

The syntax for the autoscale function is:

:AUTOSCALE<terminator>

Setting Up the Analyzer

A typical analyzer setup configures the vertical range and offset voltage, the horizontal
range, delay time, delay reference, trigger mode, trigger level, and slope.

A typical example of the commands sent to the analyzer are:

:CHANNEL1:RANGE 16;OFFSET 1.00<terminator>
:SYSTEM:HEADER OFF<terminator>
:TIMEBASE:RANGE 1E-3;DELAY 100E-6<terminator>

Initializing the analyzer

The commands and syntax for initializing the analyzer are discussed in Chapter 3, “Common Com-
mands”. Refer to your GPIB manual and programming language reference manual for information on
initializing the interface.

1-13

Introduction
Getting Started Programming

This example sets the time base at 1 ms full-scale (100 µs/div), with delay of 100 µs.
Vertical is set to 16 V full-scale (2 V/div), with center of screen at 1 V, and probe atten-
uation of 10.

Example Program This program demonstrates the basic command structure used to program the ana-
lyzer.

10 CLEAR 707 ! Initialize analyzer interface
20 OUTPUT 707;"*RST" !Initialize analyzer to preset state
30 OUTPUT 707;":TIMEBASE:RANGE 5E-4"! Time base to 500 us full scale
40 OUTPUT 707;":TIMEBASE:DELAY 25E-9"! Delay to 25 ns
50 OUTPUT 707;":TIMEBASE:REFERENCE CENTER"! Display reference at center
60 OUTPUT 707;":CHANNEL1:RANGE .16"! Vertical range to 160 mV full scale
70 OUTPUT 707;":CHANNEL1:OFFSET -.04"! Offset to -40 mV
80 OUTPUT 707;":TRIGGER:LEVEL,-.4"! Trigger level to -0.4
90 OUTPUT 707;":TRIGGER:SLOPE POSITIVE"! Trigger on positive slope
100 OUTPUT 707;":SYSTEM:HEADER OFF"<terminator>
110 OUTPUT 707;":DISPLAY:GRATICULE FRAME"! Grid off
120 END

Overview of the Program

• Line 10 initializes the analyzer interface to a known state.

• Line 20 initializes the analyzer to a preset state.

• Lines 30 through 50 set the time base, the horizontal time at 500 µs full scale,
and 25 ns of delay referenced at the center of the graticule.

• Lines 60 through 70 set the vertical range to 160 millivolts full scale and the
center screen at −40 millivolts.

• Lines 80 through 90 configure the analyzer to trigger at −0.4 volts with normal
triggering.

• Line 100 turns system headers off.

• Line 110 turns the grid off.

Using the

DIGITIZE

Command

The DIGITIZE command is a macro that captures data using the acquisition
(ACQUIRE) subsystem. When the digitize process is complete, the acquisition is
stopped. The captured data can then be measured by the analyzer or transferred to the
computer for further analysis. The captured data consists of two parts: the preamble
and the waveform data record.

After changing the analyzer configuration, the waveform buffers are cleared. Before
doing a measurement, the DIGITIZE command should be sent to ensure new data has
been collected.

You can send the DIGITIZE command with no parameters for a higher throughput.
Refer to the DIGITIZE command in Chapter 4, “Root Level Commands” for details.

1-14

Introduction
Getting Started Programming

When the DIGITIZE command is sent to an analyzer, the specified channel’s waveform
is digitized with the current ACQUIRE parameters. Before sending the :WAVE-
FORM:DATA? query to get waveform data, specify the WAVEFORM parameters.

The number of data points comprising a waveform varies according to the number
requested in the ACQUIRE subsystem. The ACQUIRE subsystem determines the num-
ber of data points, type of acquisition, and number of averages used by the DIGITIZE
command. This allows you to specify exactly what the digitized information contains.
The following program example shows a typical setup:

OUTPUT 707;":SYSTEM:HEADER OFF"<terminator>
OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:FORMAT BYTE"<terminator>
OUTPUT 707;":ACQUIRE:COUNT 8"<terminator>
OUTPUT 707;":ACQUIRE:POINTS 500"<terminator>
OUTPUT 707;":DIGITIZE CHANNEL1"<terminator>
OUTPUT 707;":WAVEFORM:DATA?"<terminator>

This setup places the analyzer to acquire eight averages. This means that when the
DIGITIZE command is received, the command will execute until the waveform has
been averaged at least eight times.

After receiving the :WAVEFORM:DATA? query, the analyzer will start passing the wave-
form information when queried.

Digitized waveforms are passed from the analyzer to the computer by sending a numer-
ical representation of each digitized point. The format of the numerical representation
is controlled with the :WAVEFORM:FORMAT command and may be selected as BYTE,
WORD, or ASCII.

The easiest method of entering a digitized waveform depends on data structures, avail-
able formatting, and I/O capabilities. You must scale the integers to determine the volt-
age value of each point. These integers are passed starting with the leftmost point on
the analyzer's display. For more information, refer to Chapter 22, “Waveform Com-
mands”.

When using GPIB, a digitize operation may be aborted by sending a Device Clear over
the bus (for example, CLEAR 707).

Receiving

Information from

the Analyzer

After receiving a query (command header followed by a question mark), the analyzer
places the answer in its output queue. The answer remains in the output queue until it
is read or until another command is issued. When read, the answer is transmitted
across the interface to the computer. The input statement for receiving a response

Note

The execution of the DIGITIZE command is subordinate to the status of ongoing limit tests. (See
commands ACQuire:RUNTil on page 6-5, MTEST:RUNTil on page 17-10, and LTEST:RUNTil on page
15-5.) The DIGITIZE command will not capture data if the stop condition for a limit test has been
met.

1-15

Introduction
Getting Started Programming

message from an analyzer's output queue typically has two parameters; the device
address and a format specification for handling the response message. For example, to
read the result of the query command :CHANNEL1:RANGE? you would execute the
HP BASIC statement:

ENTER <device address>;Setting$

The device address parameter represents the address of the analyzer. This would enter
the current setting for the range in the string variable Setting$.

All results for queries sent in a program message must be read before another program
message is sent. For example, when you send the query :MEASURE:RISETIME?, you
must follow that query with an input statement. In HP BASIC, this is usually done with
an ENTER statement.

The format specification for handling response messages depends on both the com-
puter and the programming language.

String Variable

Example

The output of the analyzer may be numeric or character data, depending on what is
queried. Refer to the specific commands for the formats and types of data returned
from queries.

For the example programs, assume that the device being programmed is at device
address 707. The actual address depends on how you have configured the bus for your
own application.

In HP BASIC 5.0, string variables are case-sensitive, and must be expressed exactly the
same way each time they are used. This example shows the data being returned to a
string variable:

10 DIM Rang$[30]
20 OUTPUT 707;":CHANNEL1:RANGE?"
30 ENTER 707;Rang$
40 PRINT Rang$
50 END

After running this program, the computer displays:

+8.00000E-01

Numeric Variable

Example

This example shows the data being returned to a numeric variable:

10 OUTPUT 707;":CHANNEL1:RANGE?"
20 ENTER 707;Rang

Handling Queries Properly

If you send another command or query before reading the result of a query, the output buffer will be
cleared and the current response will be lost. This will also generate a query-interrupted error in the
error queue. If you execute an input statement before you send a query, it will cause the computer to
wait indefinitely.

1-16

Introduction
Getting Started Programming

30 PRINT Rang
40 END

After running this program, the computer displays:

.8

Definite-Length

Block Response

Data

Definite-length block response data allows any type of device-dependent data to be
transmitted over the system interface as a series of 8-bit binary data bytes. This is par-
ticularly useful for sending large quantities of data or 8-bit extended ASCII codes. The
syntax is a pound sign (#) followed by a non-zero digit representing the number of dig-
its in the decimal integer. After the non-zero digit is the decimal integer that states the
number of 8-bit data bytes being sent. This is followed by the actual data.

For example, for transmitting 4000 bytes of data, the syntax would be:

#44000 <4000 bytes of data> <terminator>

The leftmost “4” represents the number of digits in the number of bytes, and “4000”
represents the number of bytes to be transmitted.

Multiple Queries You can send multiple queries to the analyzer within a single program message, but you
must also read them back within a single program message. This can be accomplished
by either reading them back into a string variable or into multiple numeric variables.
For example, you could read the result of the query :TIMEBASE:RANGE?;DELAY? into
the string variable Results$ with the command:

ENTER 707;Results$

When you read the result of multiple queries into string variables, each response is sep-
arated by a semicolon. For example, the response of the query :TIME-
BASE:RANGE?;DELAY? would be:

<range_value>;<delay_value>

Use the following program message to read the query :TIMEBASE:RANGE?;DELAY?
into multiple numeric variables:

ENTER 707;Result1,Result2

Analyzer Status Status registers track the current status of the analyzer. By checking the analyzer sta-
tus, you can find out whether an operation has completed, is receiving triggers, and
more. “Status Reporting” on page 1-20 explains how to check the status of the ana-
lyzer.

1-17

Introduction
Interface Functions

Interface Functions

The interface functions deal with general bus management issues, as well as messages
that can be sent over the bus as bus commands. In general, these functions are defined
by IEEE 488.1.

GPIB Interface

Connector

The analyzer is equipped with a GPIB interface connector on the rear panel. This
allows direct connection to a GPIB equipped computer. You can connect an external
GPIB compatible device to the analyzer by installing a GPIB cable between the two
units. Finger tighten the captive screws on both ends of the GPIB cable to avoid acci-
dentally disconnecting the cable during operation.

A maximum of fifteen GPIB compatible instruments (including a computer) can be
interconnected in a system by stacking connectors. This allows the analyzers to be con-
nected in virtually any configuration, as long as there is a path from the computer to
every device operating on the bus.

C A U T I O N Avoid stacking more than three or four cables on any one connector. Multiple
connectors produce leverage that can damage a connector mounting.

GPIB Default

Startup

Conditions

The following default GPIB conditions are established during power-up: 1) The
Request Service (RQS) bit in the status byte register is set to zero. 2) All of the event
registers, the Standard Event Status Enable Register, Service Request Enable Register,
and the Status Byte Register are cleared.

1-18

Introduction
Interface Functions

Interface

Capabilities

The interface capabilities of this analyzer, as defined by IEEE 488.1, are listed in the
following table.

Command and

Data Concepts

The GPIB has two modes of operation, command mode and data mode. The bus is in
the command mode when the Attention (ATN) control line is true. The command
mode is used to send talk and listen addresses and various bus commands such as
group execute trigger (GET).

The bus is in the data mode when the ATN line is false. The data mode is used to con-
vey device-dependent messages across the bus. The device-dependent messages
include all of the analyzer specific commands, queries, and responses found in this
manual, including analyzer status information.

Communicating

Over the Bus

Device addresses are sent by the computer in the command mode to specify who talks
and who listens. Because GPIB can address multiple devices through the same inter-
face card, the device address passed with the program message must include the cor-
rect interface select code and the correct analyzer address.

Device Address = (Interface Select Code * 100) + (Analyzer Address)

Table 1-5. Interface Capabilities

Code Interface Function Capability

SH1 Source Handshake Full Capability

AH1 Acceptor Handshake Full Capability

T5 Talker Basic Talker/Serial Poll/Talk Only Mode/
Unaddress if Listen Address (MLA)

L4 Listener Basic Listener/
Unaddresses if Talk Address (MTA)

SR1 Service Request Full Capability

RL1 Remote Local Complete Capability

PP1 Parallel Poll Remote Configuration

DC1 Device Clear Full Capability

DT1 Device Trigger Full Capability

C0 Computer No Capability

E2 Driver Electronics Tri State (1 MB/SEC MAX)

1-19

Introduction
Interface Functions

Interface Select Code

Each interface card has a unique interface select code. This code is used by the com-
puter to direct commands and communications to the proper interface. The default is
typically “7” for GPIB interface cards.

Analyzer Address

Each analyzer on the GPIB must have a unique analyzer address between decimal 0
and 30. This analyzer address is used by the computer to direct commands and com-
munications to the proper analyzer on an interface. The default is typically “7” for this
analyzer. You can change the analyzer address in the Utilities, Remote Interface dialog
box.

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE 488.2
defines many of the actions that are taken when these commands are received by the
analyzer.

Device Clear

The device clear (DCL) and selected device clear (SDC) commands clear the input
buffer and output queue, reset the parser, and clear any pending commands. If either
of these commands is sent during a digitize operation, the digitize operation is aborted.

Group Execute Trigger

The group execute trigger (GET) command arms the trigger. This is the same action
produced by sending the RUN command.

Interface Clear

The interface clear (IFC) command halts all bus activity. This includes unaddressing all
listeners and the talker, disabling serial poll on all devices, and returning control to the
system computer.

The Analyzer is at Address 707 in Examples

The examples in this manual assume that the analyzer is at device address 707.

Do Not Use Address 21 for an Analyzer Address

Address 21 is usually reserved for the Computer interface Talk/Listen address and should not be
used as an analyzer address.

1-20

Introduction
Status Reporting

Status Reporting

An overview of the analyzer's status reporting structure is shown in the following fig-
ure. The status reporting structure shows you how to monitor specific events in the
analyzer. Monitoring these events allows determination of the status of an operation,
the availability and reliability of the measured data, and more.

• To monitor an event, first clear the event, then enable the event. All of the
events are cleared when you initialize the analyzer.

• To generate a service request (SRQ) interrupt to an external computer, enable
at least one bit in the Status Byte Register.

The Status Byte Register, the Standard Event Status Register group, and the Output
Queue are defined as the Standard Status Data Structure Model in IEEE 488.2-1987.
IEEE 488.2 defines data structures, commands, and common bit definitions for status
reporting. There are also analyzer-defined structures and bits.

Status Reporting

Data Structures

The different status reporting data structures, descriptions, and interactions are shown
in the following figure. To make it possible for any of the Standard Event Status Regis-
ter bits to generate a summary bit, the corresponding bits must be enabled. These bits
are enabled by using the *ESE common command to set the corresponding bit in the
Standard Event Status Enable Register.

To generate a service request (SRQ) interrupt to the computer, at least one bit in the
Status Byte Register must be enabled. These bits are enabled by using the *SRE com-
mon command to set the corresponding bit in the Service Request Enable Register.
These enabled bits can then set RQS and MSS (bit 6) in the Status Byte Register.

For more information about common commands, see Chapter 3, “Common Com-
mands”.

1-21

Introduction
Status Reporting

Figure 1-1. Status Reporting Overview Block Diagram

The status reporting structure consists of the registers shown in this figure.

The following table lists the bit definitions for each bit in the status reporting data
structure.

Table 1-6. Status Reporting Bit Definition (1 of 3)

Bit Description Definition

PON Power On Indicates power is turned on.

1-22

Introduction
Status Reporting

URQ Not used. Permanently set to zero.

CME Command Error Indicates if the parser detected an error.

EXE Execution Error Indicates if a parameter was out of range or was
inconsistent with the current settings.

DDE Device Dependent Error Indicates if the device was unable to complete an
operation for device dependent reasons.

QYE Query Error Indicates if the protocol for queries has been violated.

RQL Request Control Indicates if the device is requesting control.

OPC Operation Complete Indicates if the device has completed all pending
operations.

OPER Operation Status
Register

Indicates if any of the enabled conditions in the
Operation Status Register have occurred.

RQS Request Service Indicates that the device is requesting service.

MSS Master Summary Status Indicates if a device has a reason for requesting service.

ESB Event Status Bit Indicates if any of the enabled conditions in the Standard
Event Status Register have occurred.

MAV Message Available Indicates if there is a response in the output queue.

MSG Message Indicates if an advisory has been displayed.

USR User Event Register Indicates if any of the enabled conditions have occurred
in the User Event Register.

TRG Trigger Indicates if a trigger has been received.

LCL Local Indicates if a remote-to-local transition occurs.

FAIL Fail Indicates the specified test has failed.

COMP Complete Indicates the specified test has completed.

LTEST Limit Test Indicates that one of the enabled conditions in the Limit
Test Register has occurred.

MTEST Mask Test Indicates that one of the enabled conditions in the Mask
Test Register has occurred.

Table 1-6. Status Reporting Bit Definition (Continued) (2 of 3)

Bit Description Definition

1-23

Introduction
Status Reporting

ACQ Acquisition Indicates that acquisition test has completed in the
Acquisition Register.

CLCK CloCk Indicates that one of the enabled conditions in the Clock
Recovery Register has occurred.

UNLK UNLoCKed Indicates that an unlocked or trigger loss condition has
occurred in the Clock Recovery Module.

LOCK LOCKed Indicates that a locked or trigger capture condition has
occurred in the Clock Recovery Module.

NSPR1 No Signal Present
Receiver 1

Indicates that the Clock Recovery Module has detected
the loss of an optical signal on receiver one.

SPR1 Signal Present
Receiver 1

Indicates that the Clock Recovery Module has detected
an optical signal on receiver one.

NSPR2 No Signal Present
Receiver 2

Indicates that the Clock Recovery Module has detected
the loss of an optical signal on receiver two.

SPR2 Signal Present
Receiver 2

Indicates that the Clock Recovery Module has detected
an optical signal on receiver two.

LOSS Time Reference Loss Indicates the Precision Timebase (provided by the
Agilent 86107A module) has detected a time reference
loss due to a change in the reference clock signal.

PTIME Precision Timebase Indicates that one of the enabled conditions in the
Precision Timebase Register has occurred.

Table 1-6. Status Reporting Bit Definition (Continued) (3 of 3)

Bit Description Definition

1-24

Introduction
Status Reporting

Figure 1-2. Status Reporting Data Structures

1-25

Introduction
Status Reporting

Status Reporting Data Structures (continued)

1-26

Introduction
Status Reporting

Status Byte

Register

The Status Byte Register is the summary-level register in the status reporting struc-
ture. It contains summary bits that monitor activity in the other status registers and
queues. The Status Byte Register is a live register. That is, its summary bits are set and
cleared by the presence and absence of a summary bit from other event registers or
queues.

If the Status Byte Register is to be used with the Service Request Enable Register to
set bit 6 (RQS/MSS) and to generate an SRQ, at least one of the summary bits must be
enabled, then set. Also, event bits in all other status registers must be specifically
enabled to generate the summary bit that sets the associated summary bit in the Status
Byte Register.

The Status Byte Register can be read using either the *STB? common command query
or the GPIB serial poll command. Both commands return the decimal-weighted sum of
all set bits in the register. The difference between the two methods is that the serial
poll command reads bit 6 as the Request Service (RQS) bit and clears the bit which
clears the SRQ interrupt. The *STB? query reads bit 6 as the Master Summary Status
(MSS) and does not clear the bit or have any affect on the SRQ interrupt. The value
returned is the total bit weights of all of the bits that are set at the present time.

The use of bit 6 can be confusing. This bit was defined to cover all possible computer
interfaces, including a computer that could not do a serial poll. The important point to
remember is that, if you are using an SRQ interrupt to an external computer, the serial
poll command clears bit 6. Clearing bit 6 allows the analyzer to generate another SRQ
interrupt when another enabled event occurs.

The only other bit in the Status Byte Register affected by the *STB? query is the Mes-
sage Available bit (bit 4). If there are no other messages in the Output Queue, bit 4
(MAV) can be cleared as a result of reading the response to the *STB? query.

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, a program would print the sum of
the two weights. Since these bits were not enabled to generate an SRQ, bit 6 (weight =
64) is not set.

Example 1

This HP BASIC example uses the *STB? query to read the contents of the analyzer’s
Status Byte Register when none of the register's summary bits are enabled to generate
an SRQ interrupt.

10 OUTPUT 707;":SYSTEM:HEADER OFF;*STB?"!Turn headers off
20 ENTER 707;Result!Place result in a numeric variable
30 PRINT Result!Print the result
40 End

The next program prints 132 and clears bit 6 (RQS) of the Status Byte Register. The
difference in the decimal value between this example and the previous one is the value
of bit 6 (weight = 64). Bit 6 is set when the first enabled summary bit is set, and is
cleared when the Status Byte Register is read by the serial poll command.

1-27

Introduction
Status Reporting

Example 2

This example uses the HP BASIC serial poll (SPOLL) command to read the contents of
the analyzer’s Status Byte Register.

10 Result = SPOLL(707)
20 PRINT Result
30 END

Service Request

Enable Register

Setting the Service Request Enable Register bits enables corresponding bits in the Sta-
tus Byte Register. These enabled bits can then set RQS and MSS (bit 6) in the Status
Byte Register.

Bits are set in the Service Request Enable Register using the *SRE command, and the
bits that are set are read with the *SRE? query. Bit 6 always returns 0. Refer to the Sta-
tus Reporting Data Structures shown in Figure 1-2.

Example

This example sets bit 4 (MAV) and bit 5 (ESB) in the Service Request Enable Register.

OUTPUT 707;"*SRE 48"

This example uses the parameter “48” to allow the analyzer to generate an SRQ inter-
rupt under the following conditions:

• When one or more bytes in the Output Queue set bit 4 (MAV).

• When an enabled event in the Standard Event Status Register generates a sum-
mary bit that sets bit 5 (ESB).

Trigger Event

Register (TRG)

This register sets the TRG bit in the status byte when a trigger event occurs.

The TRG event register stays set until it is cleared by reading the register or using the
*CLS (clear status) command. If your application needs to detect multiple triggers, the
TRG event register must be cleared after each one.

If you are using the Service Request to interrupt a computer operation when the trig-
ger bit is set, you must clear the event register after each time it is set.

Use Serial Polling to Read the Status Byte Register

Serial polling is the preferred method to read the contents of the Status Byte Register because it
resets bit 6 and allows the next enabled event that occurs to generate a new SRQ interrupt.

1-28

Introduction
Status Reporting

Standard Event

Status Register

The Standard Event Status Register (SESR) monitors the following analyzer status
events:

• PON - Power On
• CME - Command Error
• EXE - Execution Error
• DDE - Device Dependent Error
• QYE - Query Error
• RQC - Request Control
• OPC - Operation Complete

When one of these events occurs, the corresponding bit is set in the register. If the cor-
responding bit is also enabled in the Standard Event Status Enable Register, a sum-
mary bit (ESB) in the Status Byte Register is set.

The contents of the Standard Event Status Register can be read and the register
cleared by sending the *ESR? query. The value returned is the total bit weights of all of
the bits set at the present time.

Example

This example uses the *ESR? query to read the contents of the Standard Event Status
Register.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Turn headers off
20 OUTPUT 707;"*ESR?"
30 ENTER 707;Result!Place result in a numeric variable
40 PRINT Result!Print the result
50 End

If bit 4 (weight = 16) and bit 5 (weight = 32) are set, the program prints the sum of the
two weights.

Standard Event

Status Enable

Register

For any of the Standard Event Status Register (SESR) bits to generate a summary bit,
you must first enable the bit. Use the *ESE (Event Status Enable) common command
to set the corresponding bit in the Standard Event Status Enable Register. Set bits are
read with the *ESE? query.

Example

Suppose your application requires an interrupt whenever any type of error occurs. The
error status bits in the Standard Event Status Register are bits 2 through 5. The sum of
the decimal weights of these bits is 60. Therefore, you can enable any of these bits to
generate the summary bit by sending:

OUTPUT 707;"*ESE 60"

Whenever an error occurs, the analyzer sets one of these bits in the Standard Event
Status Register. Because the bits are all enabled, a summary bit is generated to set bit 5
(ESB) in the Status Byte Register.

1-29

Introduction
Status Reporting

If bit 5 (ESB) in the Status Byte Register is enabled (via the *SRE command), a service
request interrupt (SRQ) is sent to the external computer.

User Event

Register (UER)

This register hosts the LCL bit (bit 0) from the Local Events Register. The other 15 bits
are reserved. You can read and clear this register using the UER? query. This register is
enabled with the UEE command. For example, if you want to enable the LCL bit, you
send a mask value of 1 with the UEE command; otherwise, send a mask value of 0.

Local Event

Register (LCL)

This register sets the LCL bit in the User Event Register and the USR bit (bit 1) in the
Status byte. It indicates a remote-to-local transition has occurred. The LER? query is
used to read and to clear this register.

Operation Status

Register (OPR)

This register hosts the CLCK bit (bit 7), the LTEST bit (bit 8), the ACQ bit (bit 9) and
the MTEST bit (bit 10).

The CLCK bit is set when any of the enabled conditions in the Clock Recovery Event
Register have occurred.

The LTEST bit is set when a limit test fails or is completed and sets the corresponding
FAIL or COMP bit in the Limit Test Events Register.

The ACQ bit is set when the COMP bit is set in the Acquisition Event Register, indicat-
ing that the data acquisition has satisfied the specified completion criteria.

The MTEST bit is set when the Mask Test either fails specified conditions or satisfies
its completion criteria, setting the corresponding FAIl or COMP bits in the Mask Test
Events Register.

The PTIME bit is set when there is a loss of the precision timebase reference occurs
setting a bit in the Precision Timebase Events Register.

The JIT bit is set in Jitter Mode when a bit is set in the Jitter Events Register. This
occurs when there is a failure or an autoscale is needed.

If any of these bits are set, the OPER bit (bit 7) of the Status Byte register is set. The
Operation Status Register is read and cleared with the OPER? query. The register out-
put is enabled or disabled using the mask value supplied with the OPEE command.

Clock Recovery

Event Register

(CRER)

This register hosts the UNLK bit (bit 0), LOCK bit (bit 1), NSPR1 bit (bit 2), SPR1 bit
(bit 3), NSPR2 bit (bit 4) and SPR2 (bit 5).

Bit 0 (UNLK) of the Clock Recovery Event Register is set when an 83491/2/3/4/5A
Clock Recovery module becomes unlocked or trigger loss has occurred.

Disabled SESR Bits Respond, but Do Not Generate a Summary Bit

Standard Event Status Register bits that are not enabled still respond to their corresponding condi-
tions (that is, they are set if the corresponding event occurs). However, because they are not
enabled, they do not generate a summary bit in the Status Byte Register.

1-30

Introduction
Status Reporting

Bit 1 (LOCK) of the Clock Recovery Event Register is set when an 83491/2/3/4/5A
Clock Recovery module becomes locked or a trigger capture has occurred.

Bit 2 (NSPR1) of the Clock Recovery Event Register is set when an 83491/2/3/4A Clock
Recovery module transitions to no longer detecting an optical signal on receiver one.
An 83495A module does not affect this bit.

Bit 3 (SPR1) of the Clock Recovery Event Register is set when an 83491/2/3/4A Clock
Recovery module transitions to detecting an optical signal on receiver one. An 83495A
module does not affect this bit.

Bit 4 (NSPR2) of the Clock Recovery Event Register is set when an 83491/2/3/4A Clock
Recovery module transitions to no longer detecting an optical signal on receiver two.
An 83495A module does not affect this bit.

Bit 5 (SPR2) of the Clock Recovery Event Register is set when an 83491/2/3/4A Clock
Recovery module transitions to detecting an optical signal on receiver two. An 83495A
module does not affect this bit.

The Clock Recovery Event Register is read and cleared with the CRER? query.

When either of the UNLK, LOCK, NSPR1, SPR1, NSPR2 or SPR2 bits are set, they in
turn set CLCK bit (bit 7) of the Operation Status Register. Results from the Clock
Recovery Event Register can be masked by using the CREE command to set the Clock
Recovery Event Enable Register. Refer to the CREE command in Chapter 4, “Root
Level Commands” for enable and mask value definitions.

Limit Test Event

Register (LTER)

Bit 0 (COMP) of the Limit Test Event Register is set when the Limit Test completes.
The Limit Test completion criteria are set by the LTESt:RUN command.

Bit 1 (FAIL) of the Limit Test Event Register is set when the Limit Test fails. Failure
criteria for the Limit Test are defined by the LTESt:FAIL command.

The Limit Test Event Register is read and cleared with the LTER? query.

When either the COMP or FAIL bits are set, they in turn set the LTEST bit (bit 8) of
the Operation Status Register. You can mask the COMP and FAIL bits, thus preventing
them from setting the LTEST bit, by defining a mask using the LTEE command.

Acquisition Event

Register (AER)

Bit 0 (COMP) of the Acquisition Event Register is set when the acquisition limits com-
plete. The Acquisition completion criteria are set by the ACQuire:RUNtil command.
The Acquisition Event Register is read and cleared with the ALER? query.

Enable Mask Value

Block COMP and FAIL 0
Enable COMP, block FAIL 1
Enable FAIL, block COMP 2
Enable COMP and FAIL 3

1-31

Introduction
Status Reporting

When the COMP bit is set, it in turn sets the ACQ bit (bit 9) of the Operation Status
Register. Results from the Acquisition Register can be masked by using the AEEN com-
mand to set the Acquisition Event Enable Register to the value 0. You enable the COMP
bit by setting the mask value to 1.

Mask Test Event

Register (MTER)

Bit 0 (COMP) of the Mask Test Event Register is set when the Mask Test completes.
The Mask Test completion criteria are set by the MTESt:RUMode command.

Bit 1 (FAIL) of the Mask Test Event Register is set when the Mask Test fails. This will
occur whenever any sample is recorded within any region defined in the mask.

The Mask Test Event Register is read and cleared with the MTER? query.

When either the COMP or FAIL bits are set, they in turn set the MTEST bit (bit 10) of
the Operation Status Register. You can mask the COMP and FAIL bits, thus preventing
them from setting the MTEST bit, by setting corresponding bits to zero using the
MTEE command.

Precision

Timebase Event

Register (PTER)

Bit 0 (LOSS) of the Precision Timebase Event Register is set when loss of the time ref-
erence occurs. Time reference is lost when a change in the amplitude or frequency of
the reference clock signal is detected. The Precision Timebase Event Register is read
and cleared with the PTER? query.

When the LOSS bit is set, it in turn sets the PTIME bit (bit 11) of the Operation Status
Register. Results from the Precision Timebase Register can be masked by using the
PTEE command to set the Precision Timebase Event Enable Register to the value 0.
You enable the LOSS bit by setting the mask value to 1.

Jitter Event

Register (JIT)

Bit 0 of the Jitter Event Register is set when characterizing edges in Jitter Mode fails.
Bit 1 of the register is set when pattern synchronization is lost in Jitter Mode. Bit 2 of
the register is set when a parameter change in Jitter Mode has made autoscale neces-
sary. Bit 12 of the Operation Status Register (JIT) indicates that one of the enabled
conditions in the Jitter Event Register has occurred.

Enable Mask Value

Block COMP and FAIL 0
Enable COMP, block FAIL 1
Enable FAIL, block COMP 2
Enable COMP and FAIL 3

Install the Precision Timebase Module

The Precision Timebase feature requires the installation of the Agilent 86107A Precision Timebase
Module.

1-32

Introduction
Status Reporting

Error Queue As errors are detected, they are placed in an error queue. This queue is first in, first
out. If the error queue overflows, the last error in the queue is replaced with error
–350, “Queue overflow”. Any time the queue overflows, the oldest errors remain in the
queue, and the most recent error is discarded. The length of the analyzer's error queue
is 30 (29 positions for the error messages, and 1 position for the “Queue overflow” mes-
sage).

The error queue is read with the SYSTEM:ERROR? query. Executing this query reads
and removes the oldest error from the head of the queue, which opens a position at the
tail of the queue for a new error. When all the errors have been read from the queue,
subsequent error queries return 0, “No error.”

The error queue is cleared when any of the following occurs:

• When the analyzer is powered up.
• When the analyzer receives the *CLS common command.
• When the last item is read from the error queue.

For more information on reading the error queue, refer to the SYSTEM:ERROR? query
in Chapter 5, “System Commands”. For a complete list of error messages, refer to
“Error Messages” on page 1-60.

Output Queue The output queue stores the analyzer-to-computer responses that are generated by
certain analyzer commands and queries. The output queue generates the Message
Available summary bit when the output queue contains one or more bytes. This sum-
mary bit sets the MAV bit (bit 4) in the Status Byte Register. The output queue may be
read with the HP BASIC ENTER statement.

Message Queue The message queue contains the text of the last message written to the advisory line on
the screen of the analyzer. The queue is read with the SYSTEM:DSP? query. Note that
messages sent with the SYSTem:DSP command do not set the MSG status bit in the
Status Byte Register.

Clearing Registers

and Queues

The *CLS common command clears all event registers and all queues except the out-
put queue. If *CLS is sent immediately following a program message terminator, the
output queue is also cleared.

1-33

Introduction
Status Reporting

Figure 1-3. Status Reporting Decision Chart

1-34

Introduction
Message Communication and System Functions

Message Communication and System Functions

This chapter describes the operation of analyzers that operate in compliance with the
IEEE 488.2 (syntax) standard. It is intended to give you enough basic information
about the IEEE 488.2 standard to successfully program the analyzer. You can find addi-
tional detailed information about the IEEE 488.2 standard in ANSI/IEEE Std 488.2-
1987, “IEEE Standard Codes, Formats, Protocols, and Common Commands.”

This analyzer series is designed to be compatible with other Agilent Technologies IEEE
488.2 compatible instruments. Analyzers that are compatible with IEEE 488.2 must
also be compatible with IEEE 488.1 (GPIB bus standard); however, IEEE 488.1 com-
patible analyzers may or may not conform to the IEEE 488.2 standard. The IEEE 488.2
standard defines the message exchange protocols by which the analyzer and the com-
puter will communicate. It also defines some common capabilities that are found in all
IEEE 488.2 analyzers.

This chapter also contains some information about the message communication and
system functions not specifically defined by IEEE 488.2.

Protocols

The message exchange protocols of IEEE 488.2 define the overall scheme used by the
computer and the analyzer to communicate. This includes defining when it is appropri-
ate for devices to talk or listen, and what happens when the protocol is not followed.

Functional

Elements

Before proceeding with the description of the protocol, you should understand a few
system components.

Input Buffer The input buffer of the analyzer is the memory area where commands and queries are
stored prior to being parsed and executed. It allows a computer to send a string of com-
mands, which could take some time to execute, to the analyzer, then proceed to talk to
another analyzer while the first analyzer is parsing and executing commands.

Output Queue The output queue of the analyzer is the memory area where all output data, or
response messages, are stored until read by the computer.

1-35

Introduction
Message Communication and System Functions

Parser The analyzer's parser is the component that interprets the commands sent to the ana-
lyzer and decides what actions should be taken. “Parsing” refers to the action taken by
the parser to achieve this goal. Parsing and execution of commands begins when either
the analyzer recognizes a program message terminator, or the input buffer becomes
full. If you want to send a long sequence of commands to be executed, then talk to
another analyzer while they are executing, you should send all of the commands before
sending the program message terminator.

Protocol Overview The analyzer and computer communicate using program messages and response mes-
sages. These messages serve as the containers into which sets of program commands
or analyzer responses are placed.

A program message is sent by the computer to the analyzer, and a response message is
sent from the analyzer to the computer in response to a query message. A query mes-
sage is defined as being a program message that contains one or more queries. The
analyzer will only talk when it has received a valid query message and, therefore, has
something to say. The computer should only attempt to read a response after sending a
complete query message, but before sending another program message.

Protocol

Operation

When the analyzer is turned on, the input buffer and output queue are cleared, and the
parser is reset to the root level of the command tree.

The analyzer and the computer communicate by exchanging complete program mes-
sages and response messages. This means that the computer should always terminate a
program message before attempting to read a response. The analyzer will terminate
response messages except during a hardcopy output.

After a query message is sent, the next message should be the response message. The
computer should always read the complete response message associated with a query
message before sending another program message to the same analyzer.

The analyzer allows the computer to send multiple queries in one query message. This
is referred to as sending a “compound query”. Multiple queries in a query message are
separated by semicolons. The responses to each of the queries in a compound query
will also be separated by semicolons.

Commands are executed in the order they are received.

Protocol

Exceptions

If an error occurs during the information exchange, the exchange may not be com-
pleted in a normal manner.

Remember This Rule of Analyzer Communication

The basic rule to remember is that the analyzer will only talk when prompted to, and it then expects
to talk before being told to do something else.

1-36

Introduction
Message Communication and System Functions

Suffix Multiplier The suffix multipliers that the analyzer will accept are shown in Table 1-7.

Suffix Unit The suffix units that the analyzer will accept are shown in Table 1-8.

Table 1-7. <suffix mult>

Value Mnemonic Value Mnemonic

1E18 EX 1E-3 m

1E15 PE 1E-6 u

1E12 T 1E-9 n

1E9 G 1E-12 p

1E6 MA 1E-15 f

1E3 K 1E-18 a

Table 1-8. <suffix unit>

Suffix Referenced Unit

V Volt

s Second

W Watt

BIT Bits

dB Decibel

% Percent

Hz Hertz

1-37

Introduction
Programming Conventions

Programming Conventions

This chapter describes conventions used to program the Agilent 86100A, and conven-
tions used throughout this manual. A block diagram and description of data flow is
included for understanding analyzer operations. A description of the command tree
and command tree traversal is also included. See the Quick Reference for more infor-
mation about command syntax.

Data Flow The data flow gives you an idea of where the measurements are made on the acquired
data and when the post-signal processing is applied to the data.

The following figure is a block diagram of the analyzer. The diagram is laid out serially
for a visual perception of how the data is affected by the analyzer.

Figure 1-4. Sample Data Processing

The sample data is stored in the channel memory for further processing before being
displayed. The time it takes for the sample data to be displayed depends on the number
of post processes you have selected.

Averaging your sampled data helps remove any unwanted noise from your waveform.

1-38

Introduction
Programming Conventions

You can store your sample data in the analyzer’s waveform memories for use as one of
the sources in Math functions, or to visually compare against a waveform that is cap-
tured at a future time. The Math functions allow you to apply mathematical operations
on your sampled data. You can use these functions to duplicate many of the mathemat-
ical operations that your circuit may be performing to verify that your circuit is operat-
ing correctly.

The measurements section performs any of the automated measurements that are
available in the analyzer. The measurements that you have selected appear at the bot-
tom of the display.

The Connect Dots section draws a straight line between sample data points, giving an
analog look to the waveform. This is sometimes called linear interpolation.

Truncation Rule The following truncation rule is used to produce the short form (abbreviated spelling)
for the mnemonics used in the programming headers and alpha arguments.

The following table shows how the truncation rule is applied to commands.

The Command

Tree

The command tree in Figure 1-5 on page 1-40 shows all of the commands in the
Agilent 86100A and the relationship of the commands to each other. The IEEE 488.2
common commands are not listed as part of the command tree because they do not
affect the position of the parser within the tree.

When a program message terminator (<NL>, linefeed - ASCII decimal 10) or a leading
colon (:) is sent to the analyzer, the parser is set to the “root” of the command tree.

Command Truncation Rule

The mnemonic is the first four characters of the keyword, unless the fourth character is a vowel.
Then the mnemonic is the first three characters of the keyword. If the length of the keyword is four
characters or less, this rule does not apply, and the short form is the same as the long form.

Table 1-9. Mnemonic Truncation

Long Form Short Form How the Rule is Applied

RANGE RANG Short form is the first four characters of the keyword.

PATTERN PATT Short form is the first four characters of the keyword.

DISK DISK Short form is the same as the long form.

DELAY DEL Fourth character is a vowel, short form is the first three characters.

1-39

Introduction
Programming Conventions

Command Types

The commands in this analyzer can be placed into three types: common commands,
root level commands, and subsystem commands.

• Common commands are commands defined by IEEE 488.2 and control some
functions that are common to all IEEE 488.2 instruments. These commands are
independent of the tree and do not affect the position of the parser within the
tree. *RST is an example of a common command.

• Root level commands control many of the basic functions of the analyzer. These
commands reside at the root of the command tree. They can always be parsed
if they occur at the beginning of a program message or are preceded by a colon.
Unlike common commands, root level commands place the parser back at the
root of the command tree. AUTOSCALE is an example of a root level command.

• Subsystem commands are grouped together under a common node of the com-
mand tree, such as the TIMEBASE commands. Only one subsystem may be se-
lected at a given time. When the analyzer is initially turned on, the command
parser is set to the root of the command tree and no subsystem is selected.

Tree Traversal Rules

Command headers are created by traversing down the command tree. A legal com-
mand header from the command tree would be :TIMEBASE:RANGE. This is referred to
as a compound header. A compound header is a header made up of two or more mne-
monics separated by colons. The compound header contains no spaces. The following
rules apply to traversing the tree.

In the command tree, use the last mnemonic in the compound header as a reference
point (for example, RANGE). Then find the last colon above that mnemonic (TIME-
BASE:). That is the point where the parser resides. Any command below this point can
be sent within the current program message without sending the mnemonics which
appear above them (for example, REFERENCE).

Tree Traversal Rules

A leading colon or a program message terminator (<NL> or EOI true on the last byte) places the
parser at the root of the command tree. A leading colon is a colon that is the first character of a pro-
gram header. Executing a subsystem command places you in that subsystem until a leading colon or
a program message terminator is found.

1-40

Introduction
Programming Conventions

Figure 1-5. Command Tree

1-41

Introduction
Programming Conventions

Command Tree (Continued)

1-42

Introduction
Programming Conventions

Command Tree (Continued)

1-43

Introduction
Programming Conventions

Command Tree (Continued)

1-44

Introduction
Programming Conventions

Command Tree (Continued)

1-45

Introduction
Programming Conventions

Tree Traversal Examples

The OUTPUT statements in the following examples are written using HP BASIC 5.0.
The quoted string is placed on the bus, followed by a carriage return and linefeed
(CRLF).

Example 1

Consider the following command:

OUTPUT 707;":CHANNEL1:RANGE 0.5;OFFSET 0"

The colon between CHANNEL1 and RANGE is necessary because CHANNEL1:RANGE
is a compound command. The semicolon between the RANGE command and the OFF-
SET command is required to separate the two commands or operations. The OFFSET
command does not need CHANNEL1 preceding it because the CHANNEL1:RANGE
command sets the parser to the CHANNEL1 node in the tree.

Example 2

Consider the following commands:

OUTPUT 707;":TIMEBASE:REFERENCE CENTER;POSITION 0.00001"

or

OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
OUTPUT 707;":TIMEBASE:POSITION 0.00001"

In the first line of example 2, the “subsystem selector” is implied for the
POSITION command in the compound command.

A second way to send these commands is shown in the second part of the example.
Since the program message terminator places the parser back at the root of the com-
mand tree, TIMEBASE must be reselected to re-enter the TIMEBASE node before
sending the POSITION command.

Example 3

Consider the following command:

OUTPUT 707;":TIMEBASE:REFERENCE CENTER;:CHANNEL1:OFFSET 0"

In example 3, the leading colon before CHANNEL1 tells the parser to go back to the
root of the command tree. The parser can then recognize the
CHANNEL1:OFFSET command and enter the correct node.

Infinity

Representation

The representation for infinity for this analyzer is 9.99999E+37. This is also the value
returned when a measurement cannot be made.

Sequential and

Overlapped

Commands

IEEE 488.2 makes a distinction between sequential and overlapped commands.

Sequential commands finish their task before the execution of the next command
starts.

1-46

Introduction
Programming Conventions

Overlapped commands run concurrently. Commands following an overlapped com-
mand may be started before the overlapped command is completed. The common com-
mands *WAI and *OPC may be used to ensure that commands are completely
processed before subsequent commands are executed.

Response

Generation

As defined by IEEE 488.2, query responses may be buffered for the following reasons:

• When the query is parsed by the analyzer.

• When the computer addresses the analyzer to talk so that it may read the re-
sponse.

This analyzer buffers responses to a query when the query is parsed.

EOI The EOI bus control line follows the IEEE 488.2 standard without exception.

1-47

Introduction
Multiple Databases

Multiple Databases

Eye/Mask measurements in the Agilent 86100A are based on statistical data that is
acquired and stored in the color grade/gray scale database. The color grade/gray scale
database consists of all data samples displayed on the display graticule. The measure-
ment algorithms are dependent upon histograms derived from the database. This data-
base is internal to the instrument’s applications. The color grade/gray scale database
cannot be imported into an external database application.

Firmware revision A.03.00 and later allows for multiple color grade/gray scale data-
bases to be acquired and displayed simultaneously. This includes

• all four instrument channels

• all four math functions

• one saved color grade/gray scale file

The ability to use multiple databases allows for the comparison of

• channels to each other

• channels to a saved color grade/gray scale file

• functions to the channel data on which it is based

The advantage of acquiring and displaying channels and functions simultaneously is
test times are greatly reduced. For example, the time taken to acquire two channels in
parallel is approximately the same time taken to acquire a single channel.

Using Multiple

Databases in

Remote Programs

You will notice that throughout this manual, most commands that control histograms,
mask tests, or color grade data have additional optional parameters that were not avail-
able in firmware revisions prior to A.03.00. You can use the commands to control a sin-
gle channel or add the argument APPend to enable more than one channel. The
following example illustrates two uses of the CHANnel<n>:DISPlay command.

Eye/Mask Measurements

If you want to perform an eye measurement, it is necessary that you first produce an eye diagram
by triggering the instrument with a synchronous clock signal. Measurements made on a pulse
waveform while in Eye/Mask mode will fail.

1-48

Introduction
Multiple Databases

SYSTem:MODE EYE
CHANnel1:DISPlay ON
CHANnel2:DISPlay ON
The result using the above set of commands, is Channel 1 cleared and disabled while
Channel 2 is enabled and displayed.

However, by adding the argument APPend to the last command of the set, both Chan-
nels 1 and 2 will be enabled and displayed .

SYSTem:MODE EYE
CHANnel1:DISPlay ON
CHANnel2:DISPlay ON,APPend
For a example of using multiple databases, refer to “multidatabase.c Sample Program”
on page 2-43.

Downloading a

Database

The general process for downloading a color grade/gray scale database is as follows:

1 Send the command :WAVEFORM:SOURCE CGRADE
This will select the color grade/gray scale database as the waveform source.

2 Issue :WAVeform:FORMat WORD.
Database downloads only support word formatted data (16-bit integers).

3 Send the query :WAVeform:DATA?
The data will be sent by means of a block data transfer as a two-dimensional
array, 450 words wide by 320 words high (refer to “Definite-Length Block
Response Data” on page 1-16). The data is transferred starting with the upper
left pixel of the display graticule, column by column, until the lower right pixel
is transferred.

4 Send the command :WAVeform:XORigin to obtain the time of the left column.

5 Send the command :WAVeform:XINC to obtain the time increment of each
column.

6 Send the command :WAVeform:YORigin to obtain the voltage or power of the
vertical center of the database.

7 Send the command :WAVeform:YORigin to obtain the voltage or power of the
incremental row.

The information from steps 4 through 7 can also be obtained with the command :WAVe-
form:PREamble.

Auto Skew Another multiple database feature is the auto skew . You can use the auto skew feature
to lset the horizontal skew of multiple, active channels with the same bit rate, so that
the waveform crossings align with each other. This can be very convient when viewing
multiple eye diagrams simultaneously. Slight differences between channels and test

1-49

Introduction
Multiple Databases

devices may cause a phase difference between channels. Auto skew ensures that each
eye is properly aligned, so that measurements and mask tests can be properly exe-
cuted.

In addition, auto skew optimizes the instrument trigger level. Prior to auto skew, at
least one channel must display a complete eye diagram in order to make the initial bit
rate measurement.

Acquisition Time

Auto skew requires more data to be sampled; therefore, acquisition time during auto skew is
slightly longer than acquisition time during measurements.

1-50

Introduction
Language Compatibility

Language Compatibility

This section lists Agilent 83480A commands that are not used in the Agilent 86100A

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A (1 of 6)

Programming Commands/Queries Replacement Commands/Queries

Common Commands

*LRN SYSTEM:SETUP

Root Level Commands

:AER? No replacement

:ERASe No replacement

:HEEN :AEEN

:MENU No replacement

:MERGe No replacement

:STORe:PMEMory1 No replacement

:TEER No replacement

System Commands :SYSTem

:SYSTem:KEY No replacement

Calibration Commands :CALibrate

:CALibrate:FRAMe:CANCel :CALibrate:CANcel

:CALibrate:FRAMe:CONTinue :CALibrate:CONTinue

:CALibrate:FRAMe:DATA No replacement

:CALibrate:FRAMe:DONE? :CALibrate:STATus?

:CALibrate:FRAMe:MEMory? No replacement

:CALibrate:PLUGin:ACCuracy :CALibrate:MODule:STATus

:CALibrate:PLUGin:CANCel :CALibrate:CANcel

:CALibrate:PLUGin:CONTinue :CALibrate:CONTinue

:CALibrate:PLUGin:DONE? :CALibrate:STATus?

1-51

Introduction
Language Compatibility

:CALibrate:PLUGin:MEMory? No replacement

:CALibrate:PLUGin:OFFSet :CALibrate:MODule:OFFSet

:CALibrate:PLUGin:OPOWer :CALibrate:MODule:OPOWer

:CALibrate:PLUGin:OPTical :CALibrate:MODule:OPTical

:CALibrate:PLUGin:OWAVelength :CALibrate:MODule:OWAVelength

:CALibrate:PLUGin:TIME? :CALibrate:MODule:TIME?

:CALibrate:PLUGin:VERTical :CALibrate:MODule:VERtical

:CALibrate:PROBe :CALibrate:PROBe CHANnel<N>

Channel Commands :CHANnel

:CHANnel<N>:AUTOscale :AUToscale

:CHANnel<N>:SKEW :CALibrate:SKEW

Disk Commands :DISK

:DISK:DATA? No replacement

:DISK:FORMat No replacement

Display Commands :DISPlay

:DISPlay:ASSign No replacement

:DISPlay:CGRade :SYSTem:MODE EYE

:DISPlay:CGRade? :SYSTem:MODE?

:DISPlay:COLumn :DISPlay:LABel

:DISPlay:DATA :WAVeform:DATA

:DISPlay:DWAVeform No replacement

:DISPlay:FORMat No replacement

:DISPlay:INVerse :DISPlay:LABel

:DISPlay:LINE :DISPlay:LABel

:DISPlay:MASK No replacement

:DISPlay:ROW :DISPlay:LABel

:DISPlay:SOURce No replacement

:DISPlay:STRing :DISPlay:LABel

:DISPlay:TEXT :DISPlay:LABel:DALL

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A (2 of 6)

1-52

Introduction
Language Compatibility

FFT Commands :FFT

FFT is not available in the 86100A/B.

Function Commands :FUNCtion

:FUNCtion<N>:ADD No replacement

:FUNCtion<N>:BWLimit No replacement

:FUNCtion<N>:DIFFerentiate No replacement

:FUNCtion<N>:DIVide No replacement

:FUNCtion<N>:FFT No replacement, FFT not available

:FUNCtion<N>:INTegrate No replacement

:FUNCtion<N>:MULTiply No replacement

:FUNCtion<N>:ONLY :FUNCtion<N>:MAGNify

Hardcopy Commands :HARDcopy

:HARDcopy:ADDRess :HARDcopy:DPRinte

:HARDcopy:BACKground :HARDcopy:IMAGe INVert

:HARDcopy:BACKground? No replacement

:HARDcopy:DESTination No replacement

:HARDcopy:DEVice No replacement

:HARDcopy:FFEed No replacement

:HARDcopy:FILename No replacement

:HARDcopy:LENGth No replacement

:HARDcopy:MEDia No replacement

Histogram Commands :HISTogram

:HISTogram:RRATe :DISPlay:RRATe

:HISTogram:RUNTil :ACQuire:RUNTil

:HISTogram:SCALe :HISTogram:SCALe:SIZE

:HISTogram:SCALe:OFFSet :HISTogram:SCALe:SIZE

:HISTogram:SCALe:RANGe :HISTogram:SCALe:SIZE

:HISTogram:SCALe:SCALe :HISTogram:SCALe:SIZE

:HISTogram:SCALe:TYPE :HISTogram:SCALe:SIZE

Limit Test Commands :LTESt

:LTESt:SSCReen:DDISk:BACKground :LTESt:SSCReen:IMAGe

:LTESt:SSCReen:DDISk:MEDia No replacement

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A (3 of 6)

1-53

Introduction
Language Compatibility

:LTESt:SSCReen:DDISk:PFORmat No replacement

:LTESt:SSCReen:DPRinter:ADDRess No replacement

:LTESt:SSCReen:DPRinter:BACKground No replacement

:LTESt:SSCReen:DPRinter:MEDia No replacement

:LTESt:SSCReen:DPRinter:PORT No replacement

:LTESt:SSUMmary:ADDRess No replacement

:LTESt:SSUMmary:MEDia No replacement

:LTESt:SSUMmary:PFORmat No replacement

:LTESt:SSUMmary:PORT No replacement

Marker Commands :MARKer

:MARKer:CURSor? No replacement. Use individual queries.

:MARKer:MEASurement:READout No replacement

:MARKer:MODE :MARKer:STATe

:MARKer:MODE? No replacement

:MARKer:TDELta? :MARKer:XDELta?

:MARKer:TSTArt :MARKer:X1Position

:MARKer:TSTOp :MARKer:X2Position

:MARKer:VDELta :MARKer:YDELta

:MARKer:VSTArt :MARKer:Y1Position

:MARKer:VSTOp :MARKer:Y2Position

Mask Test Commands :MTESt

:MTESt:AMASk:CReate No replacement

:MTESt:AMASk:SOURce No replacement

:MTESt:AMASk:UNITs No replacement

:MTESt:AMASk:XDELta No replacement

:MTESt:AMASk:YDELta No replacement

:MTESt:AMODe No replacement

:MTESt:COUNt:FWAVeforms? MTESt:COUNt:HITS? TOTal

:MTESt:FENable No replacement

:MTESt:MASK:DEFine No replacement a

:MTESt:POLYgon:DEFine No replacement a

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A (4 of 6)

1-54

Introduction
Language Compatibility

:MTESt:POLYgon:DELete No replacement a

:MTESt:POLYgon:MOVE No replacement a

:MTESt:RECall :MTESt:LOAD

:MTESt:SAVE No replacement

:MTESt:SSCReen:DDISk:BACKground :MTESt:SSCReen:IMAGe

:MTESt:SSCReen:DDISk:MEDia No replacement

:MTESt:SSCReen:DDISk:PFORmat No replacement

:MTESt:SSCReen:DPRinter No replacement

:MTESt:SSCReen:DPRinter:ADDRess No replacement

:MTESt:SSCReen:DPRinter:BACKground No replacement

:MTESt:SSCReen:DPRinter:MEDia No replacement

:MTESt:SSCReen:DPRinter:PFORmat No replacement

:MTESt:SSCReen:DPRinter:PORT No replacement

:MTESt:SSUMmary:ADDRess No replacement

:MTESt:SSUMmary:BACKground No replacement

:MTESt:SSUMmary:MEDia No replacement

:MTESt:SSUMmary:PFORmat No replacement

:MTESt:SSUMmary:PORT No replacement

Measure Commands :MEASure

:MEASure:CGRade:ERCalibrate :CALibrate:ERATio:STARt CHANnel<N>

:MEASure:CGRade:ERFactor No replacement

:MEASure:CGRade:QFACtor :MEASure:CGRade:ESN

:MEASure:FFT No replacement. FFT not available.

:MEASure:HISTogram:HITS Query only

:MEASure:HISTogram:MEAN Query only

:MEASure:HISTogram:MEDian Query only

:MEASure:HISTogram:M1S Query only

:MEASure:HISTogram:M2S Query only

:MEASure:HISTogram:OFFSET? No replacement

:MEASure:HISTogram:PEAK Query only

:MEASure:HISTogram:PP Query only

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A (5 of 6)

1-55

Introduction
Language Compatibility

a Refer to the Infiniium DCA Online Help to view information about defining custom masks.

:MEASure:PREShoot No replacement

:MEASure:STATistics No replacement. Statistics always on.

:MEASure:TEDGe Query only

:MEASure:VLOWer No replacement

:MEASure:VMIDdle No replacement

:MEASure:VTIMe Query only

:MEASure:VUPPer No replacement

Timebase Commands :TIMebase

:TIMebase:DELay :TIMebase:POSition

:TIMebase:VIEW No replacement

:TIMebase:WINDow:DELay No replacement

:TIMebase:WINDow:POSition No replacement

:TIMebase:WINDow:RANGe No replacement

:TIMebase:WINDow:SCALe No replacement

:TIMebase:WINDow:SOURce No replacement

Trigger Commands :TRIGger

:TRIGger:SWEep :TRIGger:SOURce FRUN

:TRIGger:SWEep? :TRIGger:SOURce?

:TRIGger<N>:BWLimit :TRIGger:BWLimit and :TRIGger:GATed

:TRIGger<N>:PROBe :TRIGger:ATTenuation

Waveform Commands :WAVeform

:WAVeform:COMPlete No replacement

:WAVeform:COUPling No replacement

:WAVeform:VIEW? No replacement

Agilent 83480A/54750A Programming Commands and Queries Not Used in the
86100A (6 of 6)

1-56

Introduction
New and Revised Commands

New and Revised Commands

This section lists all new and revised commands for the 86100C, firmware revisions
3.10 and 4.00. Each command listed is followed by the page number where the com-
mand is documented. Revision 4.00 introduced the Jitter Mode of instrument opera-
tion. Refer to “Commands Unavailable in Jitter Mode” on page 1-58 for a list of
commands that should not be used while the instrument is in Jitter Mode.

Root Level

Commands

BLANk 4-4
JEE (Jitter Event Enable Register) 4-8
JER? (Jitter Event Register) 4-8
VIEW 4-16

System Commands MODE 5-6

Acquire

Commands

EYELine 6-3
RUNTil 6-5

Clock Recovery

Commands

INPut 9-2
LBANdwidth 9-2
LOCKed? 9-3
RATE 9-3

Disk Commands The drive designation for disk commands has changed from C: (86100A/B) to D:
(86100C). Refer to the commands in Chapter 10, “Disk Commands”.

STORe 10-6

Display

Commands

JITTer:GRAPh 11-4
JITTer:HISTogram:YSCale 11-5
JITTer:LAYout 11-5

Limit Test

Commands

JITTer 15-3

1-57

Introduction
New and Revised Commands

Measure

Commands

CGRade:ERFactor 18-11
JITTer:DCD? 18-29
JITTer:DDJ? 18-29
JITTer:DDJVsbit? 18-30
JITTer:DJ? 18-30
JITTer:EBITs? 18-30
JITTer:EDGE 18-31
JITTer:ISI? 18-31
JITTer:LEVel? 18-31
JITTer:LEVel:DEFine 18-32
JITTer:PATTern? 18-32
JITTer:PJ? 18-33
JITTer:PJRMS? 18-33
JITTer:RJ? 18-33
JITTer:SIGNal 18-34
JITTer:SIGNal:AUTodetect 18-34
JITTer:TJ? 18-34
JITTer:UNITs 18-35

Trigger

Commands

BRATe 21-2
BRATe:AUTodetect 21-3
DCDRatio 21-3
DCDRatio:AUTodetect 21-4
PLENgth 21-5
PLENgth:AUTodetect 21-5
PLOCk 21-6
PLOCk:AUTodetect 21-6
RBIT 21-6

1-58

Introduction
Commands Unavailable in Jitter Mode

Commands Unavailable in Jitter Mode

This section describes the commands that can generate errors when controlling the
instrument in Jitter mode. This can be due to the command or one of its arguments
that are not allowed in Jitter mode. Refer to the individual command reference for
detailed information. Refer to “New and Revised Commands” on page 1-56 for a list of
commands that can be used to control Jitter mode.

Waveform Files Waveform and Color Grade/Gray Scale files cannot be saved or loaded in Jitter mode.
The commands listed below produce a "Settings conflict" error when executed in Jitter
Mode.

DISK:STORe 10-6
When used with sources other than SETup and JDMemory.

STORe:WAVeform 4-14
ACQuire:SWAVeform 6-9
LTESt:SWAVeform 15-9
MTESt:SWAVeform 17-19

Waveform Queries Only jitter database waveforms may be set or queried in Jitter mode. Using the follow-
ing command produces the error, "Signal or trigger source selection is not available".

:WAVeform:DATA 22-5

Waveform Memory

Load/Store

Waveforms cannot be saved into waveform memories in Jitter mode. All waveform
memories are turned off when entering Jitter mode. The commands listed below pro-
duce a "Settings conflict" error when executed in Jitter mode.

WMEMory<N>:LOAD 23-2
WMEMory<N>:SAVE 23-3
DISK:LOAD 10-4

When used with sources other than SETup and JDMemory.

WAveform

Memory Display

Waveform memories cannot be turned on in Jitter mode. The following command pro-
duces a "Settings conflict" error when executed in Jitter mode.

WMEMory<N>:DISPlay 23-2

1-59

Introduction
Commands Unavailable in Jitter Mode

Waveform and

Color Grade-Gray

Scale Memory

The Waveform and Color Grade/Gray Scale memories cannot be turned on in Jitter
mode. The following command produces an "Illegal parameter value" error when exe-
cuted in Jitter mode.

VIEW 4-16
When used with arguments other than JDMemory.

Timebase Scale

And Delay

Scale and position controls on the Horizontal setup dialog are disabled in Jitter Mode.
The following commands produce a "Settings conflict" error when executed in Jitter
Mode:

TIMebase:RANGe 20-6
TIMebase:SCALe 20-7
TIMebase:POSition 20-2

Channel Scale And

Offset

Channel scale and offset controls are disabled in Jitter mode. The following commands
produce a "Settings conflict" error when executed in Jitter Mode.

CHANnel<N>:OFFSet 8-5
CHANnel<N>:RANGe 8-7
CHANnel<N>:SCALe 8-8

Acquisition

Settings

Acquisition (Averaging) controls are disabled in Jitter mode. The following commands
produce a "Settings conflict" error when executed in Jitter mode.

ACQuire:AVERage 6-2
ACQuire:BEST 6-2
ACQuire:POINts 6-4

Histograms Histograms are turned off when entering Jitter mode. The following commands pro-
duce a "Control is set to default" error.

HISTogram:MODE 14-3
VIEW 4-16

Software Skewing

of Channels

All skew adjustments are disabled in jitter mode. The following commands produce a
"Settings conflict" error when executed in Jitter mode.

CALibrate:SKEW 7-12
CALibrate:SKEW:AUTO 7-12

1-60

Introduction
Error Messages

Error Messages

This chapter describes the error messages and how they are generated. The possible
causes for the generation of the error messages are also listed in Table 1-10 on
page 1-62.

Error Queue As errors are detected, they are placed in an error queue. This queue is first in, first
out. If the error queue overflows, the last error in the queue is replaced with error
–350, “Queue overflow.” Anytime the error queue overflows, the oldest errors remain in
the queue, and the most recent error is discarded. The length of the analyzer's error
queue is 30 (29 positions for the error messages, and 1 position for the “Queue over-
flow” message). Reading an error from the head of the queue removes that error from
the queue, and opens a position at the tail of the queue for a new error. When all errors
have been read from the queue, subsequent error queries return 0, “No error.”

The error queue is cleared when any of the following occur:

• the instrument is powered up,
• a *CLS command is sent,
• the last item from the queue is read, or
• the instrument is switched from talk only to addressed mode on the front panel.

Error Numbers The error numbers are grouped according to the type of error that is detected.

• +0 indicates no errors were detected.
• –100 to –199 indicates a command error was detected.
• –200 to –299 indicates an execution error was detected.
• –300 to –399 indicates a device-specific error was detected.
• –400 to –499 indicates a query error was detected.
• +1 to +32767 indicates an analyzer-specific error has been detected.

Refer to the Agilent 86100A/B/C online Help for analyzer specific errors.

Command Error An error number in the range –100 to –199 indicates that an IEEE 488.2 syntax error
has been detected by the instrument's parser. The occurrence of any error in this class
sets the command error bit (bit 5) in the event status register and indicates that one of
the following events occurred:

• An IEEE 488.2 syntax error was detected by the parser. That is, a controller-
to-analyzer message was received that is in violation of the IEEE 488.2 stan-

1-61

Introduction
Error Messages

dard. This may be a data element that violates the analyzer's listening formats,
or a data type that is unacceptable to the analyzer.

• An unrecognized header was received. Unrecognized headers include incorrect
analyzer-specific headers and incorrect or unimplemented IEEE 488.2 com-
mon commands.

• A Group Execute Trigger (GET) was entered into the input buffer inside of an
IEEE 488.2 program message.

Events that generate command errors do not generate execution errors, analyzer-spe-
cific errors, or query errors.

Execution Error An error number in the range –200 to –299 indicates that an error was detected by the
instrument's execution control block. The occurrence of any error in this class causes
the execution error bit (bit 4) in the event status register to be set. It also indicates
that one of the following events occurred:

• The program data following a header is outside the legal input range or is in-
consistent with the analyzer's capabilities.

• A valid program message could not be properly executed due to some analyzer
condition.

Execution errors are reported by the analyzer after expressions are evaluated and
rounding operations are completed. For example, rounding a numeric data element will
not be reported as an execution error. Events that generate execution errors do not
generate command errors, analyzer specific errors, or query errors.

Device- or

Analyzer-Specific

Error

An error number in the range of –300 to –399 or +1 to +32767 indicates that the instru-
ment has detected an error caused by an analyzer operation that did not properly com-
plete. This may be due to an abnormal hardware or firmware condition. For example,
this error may be generated by a self-test response error, or a full error queue. The
occurrence of any error in this class causes the analyzer-specific error bit (bit 3) in the
event status register to be set.

Query Error An error number in the range –400 to –499 indicates that the output queue control of
the instrument has detected a problem with the message exchange protocol. An occur-
rence of any error in this class causes the query error bit (bit 2) in the event status reg-
ister to be set. An occurrence of an error also means one of the following is true:

• An attempt is being made to read data from the output queue when no output
is either present or pending.

• Data in the output queue has been lost.

1-62

Introduction
Error Messages

List of Error

Messages

Table 1-10 is a list of the error messages that are returned by the parser on this ana-
lyzer.

Table 1-10. Error Messages

0 No error The error queue is empty. Every error in the queue has been read (SYSTEM:ERROR?
query) or the queue was cleared by power-up or *CLS.

-100 Command error This is the generic syntax error used if the analyzer cannot detect more specific errors.

-101 Invalid character A syntactic element contains a character that is invalid for that type.

-102 Syntax error An unrecognized command or data type was encountered.

-103 Invalid separator The parser was expecting a separator and encountered an illegal character.

-104 Data type error The parser recognized a data element different than one allowed. For example,
numeric or string data was expected but block data was received.

-105 GET not allowed A Group Execute Trigger was received within a program message.

-108 Parameter not allowed More parameters were received than expected for the header.

-109 Missing parameter Fewer parameters were received than required for the header.

-112 Program mnemonic too long The header or character data element contains more than twelve characters.

-113 Undefined header The header is syntactically correct, but it is undefined for the analyzer. For example,
*XYZ is not defined for the analyzer.

-121 Invalid character in number An invalid character for the data type being parsed was encountered. For example, a
“9” in octal data.

-123 Numeric overflow Number is too large or too small to be represented internally.

-124 Too many digits The mantissa of a decimal numeric data element contained more than 255 digits
excluding leading zeros.

-128 Numeric data not allowed A legal numeric data element was received, but the analyzer does not accept one in
this position for the header.

-131 Invalid suffix The suffix does not follow the syntax described in IEEE 488.2 or the suffix is
inappropriate for the analyzer.

-138 Suffix not allowed A suffix was encountered after a numeric element that does not allow suffixes.

-141 Invalid character data Either the character data element contains an invalid character or the particular
element received is not valid for the header.

-144 Character data too long

-148 Character data not allowed A legal character data element was encountered where prohibited by the analyzer.

-150 String data error This error can be generated when parsing a string data element. This particular error
message is used if the analyzer cannot detect a more specific error.

-151 Invalid string data A string data element was expected, but was invalid for some reason. For example, an
END message was received before the terminal quote character.

-158 String data not allowed A string data element was encountered but was not allowed by the analyzer at this
point in parsing.

1-63

Introduction
Error Messages

-160 Block data error This error can be generated when parsing a block data element. This particular error
message is used if the analyzer cannot detect a more specific error.

-161 Invalid block data

-168 Block data not allowed A legal block data element was encountered but was not allowed by the analyzer at
this point in parsing.

-170 Expression error This error can be generated when parsing an expression data element. It is used if the
analyzer cannot detect a more specific error.

-171 Invalid expression

-178 Expression data not allowed Expression data was encountered but was not allowed by the analyzer at this point in
parsing.

-200 Execution error This is a generic syntax error which is used if the analyzer cannot detect more specific
errors.

-220 Parameter error Indicates that a program data element related error occurred.

-221 Settings conflict Indicates that a legal program data element was parsed but could not be executed due
to the current device state.

-222 Data out of range Indicates that a legal program data element was parsed but could not be executed
because the interpreted value is outside the legal range defined by the analyzer.

-223 Too much data Indicates that a legal program data element of block, expression, or string type was
received that contained more data than the analyzer could handle due to memory or
related analyzer-specific requirements.

-224 Illegal parameter value Used where exact value, from a list of possibles, was expected.

-225 Out of memory The device has insufficient memory to perform the requested operation.

-231 Data questionable Indicates that measurement accuracy is suspect.

-240 Hardware error Indicates that a legal program command or query could not be executed because of a
hardware problem in the device.

-241 Hardware missing Indicates that a legal program command or query could not be executed because of
missing device hardware; for example, an option was not installed, or current module
does not have hardware to support command or query. Definition of what constitutes
missing hardware is completely device-specific or module specific.

-250 Mass storage error Indicates that a mass storage error occurred.

-251 Missing mass storage Indicates that a legal program command or query could not be executed because of
missing mass storage; for example, an option that was not installed.

-252 Missing media Indicates that a legal program command or query could not be executed because of a
missing media; for example, no disk.

-253 Corrupt media Indicates that a legal program command or query could not be executed because of
corrupt media; for example, bad disk or wrong format.

-254 Media full Indicates that a legal program command or query could not be executed because the
media was full; for example, there is no room on the disk.

Table 1-10. Error Messages (Continued)

1-64

Introduction
Error Messages

-255 Directory full Indicates that a legal program command or query could not be executed because the
media directory was full.

-256 File name not found Indicates that a legal program command or query could not be executed because the
file name on the device media was not found; for example, an attempt was made to
read or copy a nonexistent file.

-257 File name error Indicates that a legal program command or query could not be executed because the
file name on the device media was in error; for example, an attempt was made to copy
to a duplicate file name.

-258 Media protected Indicates that a legal program command or query could not be executed because the
media was protected; for example, the write-protect tab on a disk was present.

-300 Service specific error

-310 System error Indicates that a system error occurred.

-340 Calibration failed Indicates that a calibration has failed.

-350 Queue overflow Indicates that there is no room in the error queue and an error occurred but was not
recorded.

-400 Query error This is the generic query error.

-410 Query INTERRUPTED

-420 Query UNTERMINATED

-430 Query DEADLOCKED

-440 Query UNTERMINATED
after indefinite response

Table 1-10. Error Messages (Continued)

2

Sample Program Structure 2-3
Sample C Programs 2-4

init.c - Initialization 2-5
init.c - Global Definitions and Main Program 2-6
init.c - Initializing the Analyzer 2-7
init.c - Acquiring Data 2-8
init.c - Making Automatic Measurements 2-9
init.c - Error Checking 2-11
init.c - Transferring Data to the PC 2-13
init.c - Converting Waveform Data 2-14
init.c - Storing Waveform Time and Voltage Information 2-15
gen_srq.c - Generating a Service Request 2-16

Initializing the Analyzer 2-17
Setting Up a Service Request 2-18
Generating a Service Request 2-19

Listings of the Sample Programs 2-20
hpib_decl.h Sample Program 2-21
init.c Sample Program 2-23
gen_srq.c Sample Program 2-29
srq.c Sample Program 2-31
learnstr.c Sample Program 2-33
sicl_IO.c Sample Program 2-36
natl_IO.c Sample Program 2-39
multidatabase.c Sample Program 2-43
init.bas Sample Program 2-47
srq.bas Sample Program 2-53
lrn_str.bas Sample Program 2-56

Sample Programs

2-2

Sample Programs

Sample Programs

Each program in this chapter demonstrates specific sets of instructions. This chapter
shows you some of those functions, and describes the commands being executed. Both
C and HP BASIC examples are included.

The header file is:

• hpibdecl.h

The C examples include:

• init.c
• gen_srq.c
• srq.c
• learnstr.c
• sicl_IO.c
• natl_IO.c
• multidatabase.c

The HP BASIC examples include:

• init.bas
• srq.bas
• lrn_str.bas

The sample program listings are included at the end of this chapter.

2-3

Sample Programs
Sample Program Structure

Sample Program Structure

This chapter includes segments of both the C and HP BASIC sample programs. Each
program includes the basic functions of initializing the interface and analyzer, captur-
ing the data, and analyzing the data.

In general, both the C and HP BASIC sample programs typically contain the following
fundamental segments:

Segment Description

main program Defines global variables and constants, specifies include files, and
calls various functions.

initialize Initializes the GPIB and analyzer, and sets up the analyzer and the
ACQuire subsystem.

acquire_data Digitizes the waveform to capture data.

auto_measurements Performs simple parametric measurements.

transfer_data Brings waveform data and voltage/timing information (the preamble)
into the computer.

2-4

Sample Programs
Sample C Programs

Sample C Programs

Segments of the sample programs “init.c” and “gen_srq.c” are shown and described in
this chapter.

2-5

Sample Programs
Sample C Programs

init.c - Initialization

/* init. c */

/* Command Order Example. This program demonstrates the order of commands suggested for operation of the analyzer via GPIB.
This program initializes the scope, acquires data, performs automatic measurements, and transfers and stores the data on the PC
as time/voltage pairs in a comma-separated file format useful for spreadsheet applications. It assumes a SICL INTERFACE exists
as 'hpib7' and an Agilent 86100 analyzer at address 7. It also requires the cal signal attached to Channel 1.

See the README file on the demo disk for development and linking information.
*/

include <stdio.h> /* location of: printf () */
include <stdlib.h> /* location of: atof(), atoi () */
include "hpibdecl.h" /* prototypes, global declarations, constants */

void initialize (); /* initialize the scope */
void acquire_data (); /* digitize signal */
void auto_measurements (); /* perform built-in automatic measurements */
void transfer_data (); /* transfers waveform data from scope to PC */
void convert_data (); /* converts data to time/voltage values */
void store_csv (); /* stores time/voltage pairs to comma-separated

/* variable file format */

The include statements start the program. The file “hpibdecl.h” includes prototypes
and declarations that are necessary for the analyzer sample programs.

This segment of the sample program defines the functions, in order, that are used to
initialize the scope, digitize the data, perform measurements, transfer data from the
scope to the PC, convert the digitized data to time and voltage pairs, and store the con-
verted data in comma-separated variable file format.

See the following descriptions of the program segments.

2-6

Sample Programs
Sample C Programs

init.c - Global Definitions and Main Program

/* GLOBALS */
int count;
double xorg,xref,xinc; /* values necessary for conversion of data */
double yorg,yref,yinc;
int Acquired_length;
char data[MAX_LENGTH]; /* data buffer */
double time_value[MAX_LENGTH]; /* time value of data */
double volts[MAX_LENGTH]; /* voltage value of data */

void main(void)
{
/* initialize interface and device sessions */
/* note: routine found in sicl_IO.c or natl_IO.c */

init_IO ();

initialize (); /* initialize the scope and interface and set up SRQ */
acquire_data (); /* capture the data */
auto_measurements (); /* perform automated measurements on acquired data */
transfer_data (); /* transfer waveform data to the PC from scope */
convert_data (); /* convert data to time/voltage pairs */
store_csv (); /* store the time/voltage pairs as csv file */
close_IO (); /* close interface and device sessions */

/* note: routine found in sicl_IO.c or natl_IO.c */
} /* end main () */

The init_IO routine initializes the analyzer and interface so that the scope can capture
data and perform measurements on the data. At the start of the program, global sym-
bols are defined which will be used to store and convert the digitized data to time and
voltage values.

2-7

Sample Programs
Sample C Programs

init.c - Initializing the Analyzer

/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the analyzer for proper
* acquisition of data. The instrument is reset to a known state and the
* interface is cleared. System headers are turned off to allow faster
* throughput and immediate access to the data values requested by queries.
* The analyzer time base, channel, and trigger subsystems are then
* configured. Finally, the acquisition subsystem is initialized.
*/
void initialize ()
{

 write_IO ("*RST"); /* reset scope - initialize to known state */
 write_IO ("*CLS"); /* clear status registers and output queue */

 write_IO (":SYSTem:HEADer OFF"); /* turn off system headers */

 /* initialize time base parameters to center reference, */
 /* 2 ms full-scale (200 us/div), and 20 us delay */
 write_IO (":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6");

 /* initialize Channel1 1.6V full-scale (200 mv/div); offset -400mv */
 write_IO (":CHANnel1:RANGe 1.6;OFFSet -400e-3");

 /* initialize trigger info: channel1 signal on positive slope at 300mv */
 write_IO (":TRIGger:SOURce FPANel;SLOPe POSitive");
 write_IO (":TRIGger:LEVel-0.40");

 /* initialize acquisition subsystem */
 /* Real time acquisition - no averaging; record length 4096 */
 write_IO (":ACQuire:AVERage OFF;POINts 4096");

} /* end initialize () */

2-8

Sample Programs
Sample C Programs

init.c - Acquiring Data

/*
* Function name: acquire_data
* Parameters: none
* Return value: none
* Description: This routine acquires data according to the current
* instrument settings.
*/
void acquire_data ()
{
/*
* The root level :DIGitize command is recommended for acquisition of new
* data when averaging is used. It will initialize data buffers, acquire new data, and ensure that
* acquisition criteria are met before acquisition of data is stopped. The
* captured data is then available for measurements, storage, or transfer
* to a PC. Note that the display is automatically turned off by the
* :DIGitize command and must be turned on to view the captured data.
*/

 write_IO (":DIGitize CHANnel1");
 write_IO (":CHANnel1:DISPlay ON"); /* turn on channel 1 display which is */

/* turned off by the :DIGitize command */

} /* end acquire_data () */

2-9

Sample Programs
Sample C Programs

init.c - Making Automatic Measurements

/*
* Function name: auto_measurements
* Parameters: none
* Return value: none
* Description: This routine performs automatic measurements of volts
* peak-to-peak and period on the acquired data. It also demonstrates
* two methods of error detection when using automatic measurements.
*/

void auto_measurements ()
{
float period, vpp;
unsigned char vpp_str[16];
unsigned char period_str[16];
int bytes_read;

/*
* Error checking on automatic measurements can be done using one of two methods.
* The first method requires that you turn on results in the Measurements
* subsystem using the command :MEASure:SEND ON. When this is on, the analyzer
* will return the measurement and a result indicator. The result flag is zero
* if the measurement was successfully completed, otherwise a non-zero value is
* returned which indicates why the measurement failed. See the Programmer's Manual
* for descriptions of result indicators.
*
* The second method simply requires that you check the return value of the
* measurement. Any measurement not made successfully will return with the value
* +9.999E37. This could indicate that either the measurement was unable to be
* performed, or that insufficient waveform data was available to make the
* measurement.
*/
/*
* METHOD ONE - turn on results to indicate whether the measurement completed
* successfully. Note that this requires transmission of extra data from the scope.
*/
write_IO (":MEASure:SEND ON"); /* turn results on */
write_IO (":MEASure:VPP? CHANnel1"); /* query -- volts peak-to-peak channel 1*/

bytes_read = read_IO(vpp_str,16L); /* read in value and result flag */

if (vpp_str[bytes_read-2] != '0')
 printf ("Automated vpp measurement error with result %c\n",

 vpp_str [bytes_read-2]);
else
 printf ("VPP is %f\n", (float) atof (vpp_str));

write_IO (":MEASure:PERiod? CHANnel1"); /* period channel 1 */

bytes_read = read_IO (period_str,16L); /* read in value and result flag */

if period_str[bytes_read-2] != '0')
 printf ("Automated period measurement error with result %c\n",

2-10

Sample Programs
Sample C Programs

 period_str [bytes_read-2]);
else
 printf ("Period is %f\n",(float)atof (period_str));

/*
* METHOD TWO - perform automated measurements and error checking with
* :MEAS:RESULTS OFF
*/
period = (float) 0;
vpp = (float) 0;

/* turn off results */
write_IO (":MEASure:SEND OFF");

write_IO (":MEASure:PERiod? CHANnel1"); /*period 1 */
bytes_read = read_IO (period_str,16L); /* read in value and result flag */

period = (float) atof (period_str);

if (period > 9.99e37)
 printf ("\nPeriod could not be measured.\n");
else
 printf ("\nThe period of channel 1 is %f seconds.\n", period);

write_IO (":MEASure:VPP? CHANnel1");
bytes_read = read_IO (vpp_str,16L);

vpp = (float) atof (vpp_str);

if (vpp > 9.99e37)
 printf ("Peak-to-peak voltage could not be measured.\n");
else
 printf ("The voltage peak-to-peak is %f volts.\n", vpp);

} /* end auto_measurements () */

2-11

Sample Programs
Sample C Programs

init.c - Error Checking

/* Error checking on automatic measurements can be done using one of two methods.
* The first method requires that you turn on results in the Measurements
* subsystem using the command :MEASure:SEND ON. When this is on, the analyzer
* will return the measurement and a result indicator. The result flag is zero
* if the measurement was successfully completed, otherwise a non-zero value is
* returned which indicates why the measurement failed. See the Programmer's Manual
* for descriptions of result indicators.

* The second method simply requires that you check the return value of the
* measurement. Any measurement not made successfully will return with the value
* +9.999E37. This could indicate that either the measurement was unable to be
* performed, or that insufficient waveform data was available to make the
* measurement.

* METHOD ONE - turn on results to indicate whether the measurement completed
* successfully. Note that this requires transmission of extra data from the scope.
*/

 write_IO (":MEASure:SEND ON"); /* turn results on */

 /* query -- volts peak-to-peak channel 1*/
 write_IO (":MEASure:VPP? CHANnel1");

 bytes_read = read_IO(vpp_str,16L); /* read in value and result flag */

 if (vpp_str[bytes_read-2] != '0')
 printf ("Automated vpp measurement error with result %c\n",
 vpp_str[bytes_read-2]);
 else
 printf ("VPP is %f\n",(float)atof(vpp_str));

 write_IO (":MEASure:PERiod? CHANnel1"); /* period channel 1 */
 bytes_read = read_IO(period_str,16L); /* read in value and result flag */

 if period_str[bytes_read-2] != '0')
 printf ("Automated period measurement error with result %c\n",
 period_str[bytes_read-2]);
 else
 printf ("Period is %f\n",(float)atof (period_str));

/*
* METHOD TWO - perform automated measurements and error checking with
* :MEAS:RESULTS OFF.
*/
period = (float) 0;
vpp = (float) 0;

 /* turn off results */
 write_IO (":MEASure:SEND OFF");

 write_IO (":MEASure:PERiod? CHANnel1"); /* period channel 1 */
 bytes_read = read_IO (period_str,16L); /* read in value and result flag */

2-12

Sample Programs
Sample C Programs

 period = (float) atof (period_str);

 if (period > 9.99e37)
 printf ("\nPeriod could not be measured.\n");
 else
 printf ("\nThe period of channel 1 is %f seconds.\n", period);

 write_IO (":MEASure:VPP? CHANnel1");
 bytes_read = read_IO (vpp_str,16L);

 vpp = (float) atof (vpp_str);

 if (vpp > 9.99e37)
 printf ("Peak-to-peak voltage could not be measured.\n");
 else
 printf ("The voltage peak-to-peak is %f volts.\n", vpp);

} /* end auto_measurements() */

2-13

Sample Programs
Sample C Programs

init.c - Transferring Data to the PC

/*
* Function name: transfer_data
* Parameters: none
* Return value: none
* Description: This routine transfers the waveform conversion factors and
* waveform data to the PC.
*/

void transfer_data ()
{

 int header_length;
 char header_str[8];
 char term;

 char xinc_str[32],xorg_str[32],xref_str[32];
 char yinc_str[32],yref_str[32],yorg_str[32];

 int bytes_read;

 /* waveform data source channel 1 */
 write_IO (":WAVeform:SOURce CHANnel1");
 /* setup transfer format */
 write_IO (":WAVeform:FORMat BYTE");
 /* request values to allow interpretation of raw data */
 write_IO (":WAVeform:XINCrement?");
 bytes_read = read_IO (xinc_str,32L);
 xinc = atof (xinc_str);

 write_IO (":WAVeform:XORigin?");
 bytes_read = read_IO (xorg_str,32L);
 xorg = atof (xorg_str);

 write_IO (":WAVeform:XREFerence?");
 bytes_read = read_IO (xref_str,32L);
 xref = atof (xref_str);

 write_IO (":WAVeform:YINCrement?");
 bytes_read = read_IO (yinc_str,32L);
 yinc = atof (yinc_str);

 write_IO (":WAVeform:YORigin?");
 bytes_read = read_IO (yorg_str,32L);
 yorg = atof (yorg_str);

 write_IO (":WAVeform:YREFerence?");
 bytes_read = read_IO (yref_str,32L);
 yref = atof (yref_str);

 write_IO (":WAVeform:DATA?"); /* request waveform data */
 while (data[0] != ‘#’)
 bytes_read = read_IO (data,1L); /* find the # character */
 bytes_read = read_IO (header_str,1L); /* input byte counter */

2-14

Sample Programs
Sample C Programs

 header_length = atoi (header_str);

 /* read number of points - value in bytes */
 bytes_read = read_IO (header_str,(long)header_length);

 Acquired_length = atoi (header_str); /* number of bytes */

 bytes_read = read_IO (data,Acquired_length); /* input waveform data */
 bytes_read = read_IO (&term,1L); /* input termination character */

} /* end transfer_data () */

An example header resembles the following when the information is stripped off:

#510225

The left-most “5” defines the number of digits that follow (10225). The number
“10225” is the number of points in the waveform. The information is stripped off of the
header to get the number of data bytes that need to be read from the analyzer.

init.c - Converting Waveform Data

/*
* Function name: convert_data
* Parameters: none
* Return value: none
* Description: This routine converts the waveform data to time/voltage
* information using the values that describe the waveform. These values are
* stored in global arrays for use by other routines.
*/

void convert_data ()
{

 int i;

 for (i = 0; i < Acquired_length; i++)
 {
 time_value[i] = ((i - xref) * xinc) + xorg;/* calculate time info */
 volts[i] = ((data[i] - yref) * yinc) + yorg;/* calculate volt info */
 }

} /* end convert_data () */

The data values are returned as digitized samples (sometimes called quantization lev-
els or q-levels). These data values must be converted into voltage and time values.

2-15

Sample Programs
Sample C Programs

init.c - Storing Waveform Time and Voltage Information

/*
* Function name: store_csv
* Parameters: none
* Return value: none
* Description: This routine stores the time and voltage information about
* the waveform as time/voltage pairs in a comma-separated variable file
* format.
*/

void store_csv ()
{

 FILE *fp;
 int i;

 fp = fopen ("pairs.csv","wb"); /* open file in binary mode - clear file */

/* if already exists */
 if (fp != NULL)
 {
 for (i = 0; i < Acquired_length; i++)
 {
 /* write time,volt pairs to file */

fprintf (fp,"%e,%lf\n",time_value[i],volts[i]);
 }
 fclose (fp); /* close file */
 }
 else
 printf ("Unable to open file 'pairs.csv'\n");

} /* end store_csv () */

The time and voltage information of the waveform is stored in integer format, with the
time stored first, followed by a comma, and the voltage stored second.

2-16

Sample Programs
Sample C Programs

gen_srq.c - Generating a Service Request

Segments of the sample C program “gen_srq.c” show how to initialize the inter-
face and analyzer, and generate a service request.
Two include statements start the “gen_srq.c” program. The file “stdio.h” defines the
standard location of the printf routine, and is needed whenever input or output func-
tions are used. The file “hpibdecl.h” includes necessary prototypes and declarations for
the analyzers sample programs. The path of these files must specify the disk drive and
directory where the “include” files reside.

/* gen_srq.c */

/*
* This example program initializes the Agilent 86100 scope, runs an autoscale,
* then generates and responds to a Service Request from the scope. The program
* assumes an Agilent 86100 at address 7, an interface card at interface select code 7,
* and a signal source attached to channel 1.
*/

#include <stdio.h> /* location of: printf () */
#include "hpibdecl.h"

void initialize ();
void setup_SRQ ();
void create_SRQ ();

void main (void)
{

 init_IO (); /* initialize interface and device sessions */
 initialize (); /* initialize the scope and interface */
 setup_SRQ (); /* enable SRQs on scope and set up SRQ handler */
 create_SRQ (); /* generate SRQ */
 close_IO (); /* close interface and device sessions */

} /* end main () */

The routine “init_IO” contains three subroutines that initialize the analyzer and inter-
face, and sets up and generate a service request.

The following segment describes the initialize subroutine.

2-17

Sample Programs
Sample C Programs

Initializing the Analyzer

The following function is demonstrated in the “gen_srq.c” sample program.

/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the analyzer for proper acquisition
* of data. The instrument is reset to a known state and the interface is
* cleared. System headers are turned off to allow faster throughput and
* immediate access to the data values requested by queries. The analyzer
* performs an autoscale to acquire waveform data.
*/

void initialize ()
{

 write_IO ("*RST"); /* reset scope - initialize to known state */
 write_IO ("*CLS"); /* clear status registers and output queue */
 write_IO (":SYSTem:HEADer OFF");/* turn off system headers */
 write_IO (":AUToscale"); /* perform autoscale */

} /* end initialize () */

The *RST command is a common command that resets the analyzer to a known default
configuration. Using this command ensures that the analyzer is in a known state before
you configure it. *RST ensures very consistent and repeatable results. Without *RST, a
program may run one time, but it may give different results in following runs if the ana-
lyzer is configured differently.

For example, if the trigger mode is normally set to edge, the program may function
properly. But, if someone puts the analyzer in the advanced TV trigger mode from the
front panel, the program may read measurement results that are totally incorrect. So,
*RST defaults the scope to a set configuration so that the program can proceed from the
same state each time.

The *CLS command clears the status registers and the output queue.

AUToscale finds and displays all signals that are attached to the analyzer. You should pro-
gram the analyzer’s time base, channel, and trigger for the specific measurement to be
made, as you would do from the front panel, and use whatever other commands are
needed to configure the analyzer for the desired measurement.

2-18

Sample Programs
Sample C Programs

Setting Up a Service Request

The following code segment shows how to generate a service request. The following
function is demonstrated in the “gen_srq.c” sample program.

/*
* Function name: setup_SRQ
* Parameters: none
* Return value: none
* Description: This routine initializes the device to generate Service Requests. It
* sets the Service Request Enable Register Event Status Bit and the Standard
* Event Status Enable Register to allow SRQs on Command, Execution, Device
* Dependent, or Query errors.
*/
void setup_SRQ ()
{

 /* Enable Service Request Enable Register - Event Status Bit */

 write_IO ("*SRE 32"); /* Enable Standard Event Status Enable Register */
/* enable Command Error - bit 5 - value 32 */
/* Query Error - bit 2 - value 4 */

 write_IO ("*ESE 36");

} /* end setup_SRQ () */

2-19

Sample Programs
Sample C Programs

Generating a Service Request

The following function is demonstrated in the “gen_srq.c” sample program.

/*
* Function name: create_SRQ
* Parameters: none
* Return value: none
* Description: This routine sends two illegal commands to the scope which will
* generate an SRQ and will place two error strings in the error queue. The scope
* ID is requested to allow time for the SRQ to be generated. The ID string
* will contain a leading character which is the response placed in the output
* queue by the interrupted query.
*/

void create_SRQ ()
{

 char buf [256] = { 0 }; //read buffer for id string
 int bytes_read = 0;
 int srq_asserted;

 /* Generate query error (interrupted query)*/
 /* send legal query followed by another command other than a read query response */
 write_IO (":CHANnel2:DISPlay?");
 write_IO (":CHANnel2:DISPlay OFF");

 /* Generate command error - send illegal header */
 write_IO (":CHANnel:DISPlay OFF");

 /* get instrument ID - allow time for SRQ to set */
 write_IO ("*IDN?");
 bytes_read = read_IO (buf,256L);

 /* add NULL to end of string */
 buf [bytes_read] = '\0';

 printf ("%s\n", buf);

 srq_asserted = check_SRQ ();

 if (srq_asserted)
 srq_handler ();

} /* end create_SRQ () */

2-20

Sample Programs
Listings of the Sample Programs

Listings of the Sample Programs

Listings of the C sample programs in this section include:

• hpibdecl.h
• init.c
• gen_srq.c
• srq.c
• learnstr.c
• sicl_IO.c
• natl_IO.c

Listings of the HP BASIC sample programs in this section include:

• init.bas
• srq.bas
• lrn_str.bas

2-21

Sample Programs
Listings of the Sample Programs

hpib_decl.h Sample Program

/* hpibdecl.h */

/*
* This file includes necessary prototypes and declarations for
* the example programs for the Agilent 86100*/
*/

/*
* User must indicate which GPIB card (HP or National) is being used.
* Also, if using a National card, indicate which version of windows
* (WIN31 or WIN95) is being used.
*/

#define HP /* Uncomment if using HP interface card */
/* #define NATL */

/* #define WIN31 */ /* For National card ONLY - select windows version */
#define WIN95

#ifdef HP
#include <sicl.h>
#else

 #ifdef WIN95
 #include <windows.h> /* include file for Windows 95 */
 #include <decl-32.h>
 #else
 #include <windecl.h> /* include file for Windows 3.1 */
 #endif

#endif

#define CME 32
#define EXE 16
#define DDE 8
#define QYE 4

#define SRQ_BIT 64
#define MAX_LRNSTR 14000
#define MAX_LENGTH 4096
#define MAX_INT 4192

#ifdef HP
#define DEVICE_ADDR "hpib7,7"
#define INTERFACE "hpib7"
#else
#define INTERFACE "hpib0"

#define board_index 0
#define prim_addr 7
#define second_addr 0

2-22

Sample Programs
Listings of the Sample Programs

#define timeout 13
#define eoi_mode 1
#define eos_mode 0
#endif

#define TRUE 1
#define FALSE 0

/* GLOBALS */
#ifdef HP

 INST bus;
 INST scope;

#else
 int bus;
 int scope;

#endif

/* GPIB prototypes */
void init_IO ();
void write_IO (void*);
void write_lrnstr (void*, long);
int read_IO (void*, unsigned long);
int check_SRQ ();
unsigned char read_status ();
void close_IO ();
void hpiberr ();

void srq_handler ();

2-23

Sample Programs
Listings of the Sample Programs

init.c Sample Program

/* init. c */

/*
* Command Order Example. This program demonstrates the order of commands
* suggested for operation of the Agilent 86100 analyzer via GPIB.
* This program initializes the scope, acquires data, performs
* automatic measurements, and transfers and stores the data on the
* PC as time/voltage pairs in a comma-separated file format useful
* for spreadsheet applications. It assumes a SICL INTERFACE exists
* as 'gpib7' and an Agilent 86100 analyzer at address 7.
* It also requires the cal signal attached to Channel 1.
*
* See the README file on the demo disk for development and linking information.
*/

#include <stdio.h> /* location of: printf () */
#include <stdlib.h> /* location of: atof(), atoi () */
#include "hpibdecl.h" /* prototypes, global declarations, constants */

void initialize (); /* initialize the scope */
void acquire_data (); /* digitize signal */
void auto_measurements (); /* perform built-in automatic measurements */
void transfer_data (); /* transfers waveform data from scope to PC */
void convert_data (); /* converts data to time/voltage values */
void store_csv (); /* stores time/voltage pairs to comma-separated variable file format */

/* GLOBALS */
int count;
double xorg,xref,xinc; /* values necessary for conversion of data */
double yorg,yref,yinc;
int Acquired_length;
char data [MAX_LENGTH]; /* data buffer */
double time_value [MAX_LENGTH];/* time value of data */
double volts [MAX_LENGTH]; /* voltage value of data */

void main(void)
{

 /* initialize interface and device sessions */
 /* note: routine found in sicl_IO.c or natl_IO.c */
 init_IO ();

 initialize (); /* initialize the scope and interface and set up SRQ */
 acquire_data (); /* capture the data */
 auto_measurements (); /* perform automated measurements on acquired data */
 transfer_data (); /* transfer waveform data to the PC from scope */
 convert_data (); /* convert data to time/voltage pairs */
 store_csv (); /* store the time/voltage pairs as csv file */
 close_IO (); /* close interface and device sessions */

/* note: routine found in sicl_IO.c or natl_IO.c */
} /* end main () */

2-24

Sample Programs
Listings of the Sample Programs

/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the analyzer for proper
* acquisition of data. The instrument is reset to a known state and the
* interface is cleared. System headers are turned off to allow faster
* throughput and immediate access to the data values requested by queries.
* The analyzer time base, channel, and trigger subsystems are then
* configured. Finally, the acquisition subsystem is initialized.
*/

void initialize ()
{

 write_IO ("*RST"); /* reset scope - initialize to known state */
 write_IO ("*CLS"); /* clear status registers and output queue */

 write_IO (":SYSTem:HEADer OFF"); /* turn off system headers */

 /* initialize time base parameters to center reference, 2 ms full-scale (200 us/div), and 20 us delay */
 write_IO (":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6");

 /* initialize Channel1 1.6V full-scale (200 mv/div); offset -400mv */
 write_IO (":CHANnel1:RANGe 1.6;OFFSet -400e-3");

 /* initialize trigger info: channel1 signal on positive slope at 300mv */
 write_IO (":TRIGger:SOURce FPANel;SLOPe POSitive");
 write_IO (":TRIGger:LEVel-0.40");

 /* initialize acquisition subsystem */
 /* Real time acquisition - no averaging; record length 4096 */
 write_IO (":ACQuire:AVERage OFF;POINts 4096");

} /* end initialize () */

/*
* Function name: acquire_data
* Parameters: none
* Return value: none
* Description: This routine acquires data according to the current instrument settings.
*/
void acquire_data ()
{
/*
* The root level :DIGitize command is recommended for acquisition of new
* data. It will initialize data buffers, acquire new data, and ensure that
* acquisition criteria are met before acquisition of data is stopped.

2-25

Sample Programs
Listings of the Sample Programs

* The captured data is then available for measurements, storage, or transfer
* to a PC. Note that the display is automatically turned off by the
* :DIGitize command and must be turned on to view the captured data.
*/

 write_IO (":DIGitize CHANnel1");
 write_IO (":CHANnel1:DISPlay ON"); /* turn on channel 1 display which is turned off by the :DIGitize command */

} /* end acquire_data() */

/*
* Function name: auto_measurements
* Parameters: none
* Return value: none
* Description: This routine performs automatic measurements of volts
* peak-to-peak and period on the acquired data. It also demonstrates
* two methods of error detection when using automatic measurements.
*/

void auto_measurements ()
{

 float period, vpp;
 unsigned char vpp_str[16];
 unsigned char period_str[16];
 int bytes_read;

/*
* Error checking on automatic measurements can be done using one of two methods.
* The first method requires that you turn on results in the Measurements
* subsystem using the command :MEASure:SEND ON. When this is on, the analyzer
* will return the measurement and a result indicator. The result flag is zero
* if the measurement was successfully completed, otherwise a non-zero value is
* returned which indicates why the measurement failed. See the Programmer's Manual
* for descriptions of result indicators.

* The second method simply requires that you check the return value of the
* measurement. Any measurement not made successfully will return with the value
* +9.999E37. This could indicate that either the measurement was unable to be
* performed, or that insufficient waveform data was available to make the
* measurement.

* METHOD ONE - turn on results to indicate whether the measurement completed
* successfully. Note that this requires transmission of extra data from the scope.
*/

 write_IO (":MEASure:SEND ON"); /* turn results on */

 /* query -- volts peak-to-peak channel 1*/
 write_IO (":MEASure:VPP? CHANnel1");

 bytes_read = read_IO (vpp_str,16L); /* read in value and result flag */

 if (vpp_str[bytes_read-2] != '0')
 printf ("Automated vpp measurement error with result %c\n", vpp_str[bytes_read-2]);
 else
 printf ("VPP is %f\n", (float)atof (vpp_str));

2-26

Sample Programs
Listings of the Sample Programs

 write_IO (":MEASure:PERiod? CHANnel1"); /* period channel 1 */
 bytes_read = read_IO (period_str,16L); /* read in value and result flag */

 if (period_str[bytes_read-2] != '0')
 printf ("Automated period measurement error with result %c\n", period_str [bytes_read-2]);
 else
 printf ("Period is %f\n", (float) atof (period_str));

/* METHOD TWO - perform automated measurements and error checking with :MEAS:SEND OFF */

 period = (float) 0;
 vpp = (float) 0;

 /* turn off results */
 write_IO (":MEASure:SEND OFF");

 write_IO (":MEASure:PERiod? CHANnel1"); /* period channel 1 */
 bytes_read = read_IO (period_str,16L); /* read in value and result flag */

 period = (float) atof (period_str);

 if (period > 9.99e37)
 printf ("\nPeriod could not be measured.\n");
 else
 printf ("\nThe period of channel 1 is %f seconds.\n", period);

 write_IO (":MEASure:VPP? CHANnel1");
 bytes_read = read_IO (vpp_str,16L);

 vpp = (float) atof (vpp_str);

 if (vpp > 9.99e37)
 printf ("Peak-to-peak voltage could not be measured.\n");
 else
 printf ("The voltage peak-to-peak is %f volts.\n", vpp);

} /* end auto_measurements () */

/*
* Function name: transfer_data
* Parameters: none
* Return value: none
* Description: This routine transfers the waveform conversion factors and waveform data to the PC.
*/

void transfer_data ()
{

 int header_length;
 char header_str[8];
 char term;

 char xinc_str[32],xorg_str[32],xref_str[32];
 char yinc_str[32],yref_str[32],yorg_str[32];

2-27

Sample Programs
Listings of the Sample Programs

 int bytes_read;

 /* waveform data source channel 1 */
 write_IO (":WAVeform:SOURce CHANnel1");
 /* setup transfer format */
 write_IO (":WAVeform:FORMat BYTE");
/* request values to allow interpretation of raw data */
 write_IO (":WAVeform:XINCrement?");
 bytes_read = read_IO (xinc_str,32L);
 xinc = atof (xinc_str);

 write_IO (":WAVeform:XORigin?");
 bytes_read = read_IO (xorg_str,32L);
 xorg = atof (xorg_str);

 write_IO (":WAVeform:XREFerence?");
 bytes_read = read_IO (xref_str,32L);
 xref = atof (xref_str);

 write_IO (":WAVeform:YINCrement?");
 bytes_read = read_IO (yinc_str,32L);
 yinc = atof (yinc_str);

 write_IO (":WAVeform:YORigin?");
 bytes_read = read_IO (yorg_str,32L);
 yorg = atof (yorg_str);

 write_IO (":WAVeform:YREFerence?");
 bytes_read = read_IO (yref_str,32L);
 yref = atof (yref_str);

 write_IO (":WAVeform:DATA?"); /* request waveform data */
 bytes_read = read_IO (data,1L); /* ignore leading # */
 bytes_read = read_IO (header_str,1L); /* input byte counter */
 header_length = atoi (header_str);

 /* read number of points - value in bytes */
 bytes_read = read_IO (header_str,(long)header_length);

 Acquired_length = atoi (header_str); /* number of bytes */

 bytes_read = read_IO (data,Acquired_length); /* input waveform data */
 bytes_read = read_IO (&term,1L); /* input termination character */

} /* end transfer_data () */

/*
* Function name: convert_data
* Parameters: none
* Return value: none
* Description: This routine converts the waveform data to time/voltage
* information using the values that describe the waveform. These values are
* stored in global arrays for use by other routines.
*/

void convert_data ()

2-28

Sample Programs
Listings of the Sample Programs

{
 int i;

 for (i = 0; i < Acquired_length; i++)
 {
 time_value[i] = ((i - xref) * xinc) + xorg; /* calculate time info */
 volts[i] = ((data[i] - yref) * yinc) + yorg; /* calculate volt info */
 }

} /* end convert_data () */

/*
* Function name: store_csv
* Parameters: none
* Return value: none
* Description: This routine stores the time and voltage information about
* the waveform as time/voltage pairs in a comma-separated variable file
* format.
*/

void store_csv ()
{

 FILE *fp;
 int i;

 fp = fopen ("pairs.csv","wb"); /* open file in binary mode - clear file if already exists */
 if (fp != NULL)
 {
 for (i = 0; i < Acquired_length; i++)
 {
 /* write time,volt pairs to file */
 fprintf (fp,"%e,%lf\n",time_value[i],volts[i]);

 }
 fclose (fp); /* close file */
 }
 else
 printf ("Unable to open file 'pairs.csv'\n");

} /* end store_csv () */

2-29

Sample Programs
Listings of the Sample Programs

gen_srq.c Sample Program

/* gen_srq.c */

/*
* This example programs initializes the Agilent 86100 scope, runs an
* autoscale, then generates and responds to a Service Request from the
* scope. The program assumes an Agilent 86100 at address 7, an interface card
* at interface select code 7, and a signal source attached to channel 1.
*/

#include <stdio.h> /* location of: printf () */
#include "hpibdecl.h"

void initialize ();
void setup_SRQ ();
void create_SRQ ();

void main (void)
{

 init_IO (); /* initialize interface and device sessions */
 initialize (); /* initialize the scope and interface */
 setup_SRQ (); /* enable SRQs on scope and set up SRQ handler */
 create_SRQ (); /* generate SRQ */
 close_IO (); /* close interface and device sessions */

} /* end main () */

/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the analyzer for proper acquisition of data.
* The instrument is reset to a known state and the interface is cleared.
* System headers are turned off to allow faster throughput and immediate access
* to the data values requested by queries. The analyzer performs an autoscale to acquire waveform data.
*/
void initialize ()
{

 write_IO ("*RST"); /* reset scope - initialize to known state */
 write_IO ("*CLS"); /* clear status registers and output queue */
 write_IO (":SYSTem:HEADer OFF"); /* turn off system headers */
 write_IO (":AUToscale"); /* perform autoscale */

} /* end initialize () */

/*
* Function name: setup_SRQ
* Parameters: none
* Return value: none
* Description: This routine initializes the device to generate Service
* Requests. It sets the Service Request Enable Register Event Status Bit
* and the Standard Event Status Enable Register to allow SRQs on Command
* or Query errors.

2-30

Sample Programs
Listings of the Sample Programs

*/

void setup_SRQ ()
{

 /* Enable Service Request Enable Register - Event Status Bit */
 write_IO ("*SRE 32");

 /* Enable Standard Event Status Enable Register enable Command Error - bit 4 - value 32 Query Error - bit 1 - value 4 */
 write_IO ("*ESE 36");

} /* end setup_SRQ () */

/*
* Function name: create_SRQ
* Parameters: none
* Return value: none
* Description: This routine sends two illegal commands to the scope which will generate an
* SRQ and will place two error strings in the error queue. The scope ID is requested to allow
* time for the SRQ to be generated. The ID string will contain a leading character which
* is the response placed in the output queue by the interrupted query.
*/
void create_SRQ ()
{

 char buf [256] = { 0 }; //read buffer for id string
 int bytes_read = 0;
 int srq_asserted;

 /* Generate query error (interrupted query)*/
 /* send legal query followed by another command other than a read query response */
 write_IO (":CHANnel2:DISPlay?");

 write_IO (":CHANnel2:DISPlay OFF");

 /* Generate command error - send illegal header */
 write_IO (":CHANnel:DISPlay OFF");

 /* get instrument ID - allow time for SRQ to set */
 write_IO ("*IDN?");
 bytes_read = read_IO (buf,256L);

 /* add NULL to end of string */
 buf [bytes_read] = '\0';

 printf ("%s\n", buf);
 srq_asserted = check_SRQ ();
 if (srq_asserted)
 srq_handler ();

} /* end create_SRQ () */

2-31

Sample Programs
Listings of the Sample Programs

srq.c Sample Program

/* file: srq.c */

/* This file contains the code to handle Service Requests from an GPIB device */

#include <stdio.h> /* location of printf (), fopen (), and fclose () */
#include "hpibdecl.h"

/*
* Function name: srq_handler
* Parameters: none
* Return value: none
* Description: This routine services the scope when an SRQ is generated.
* An error file is opened to receive error data from the scope.
*/

void srq_handler ()
{
 FILE *fp;
 unsigned char statusbyte = 0;
 int i =0;
 int more_errors = 0;
 char error_str[64] ={0};
 int bytes_read;
 int srq_asserted = TRUE;

 srq_asserted = check_SRQ ();

 while (srq_asserted)
 {
 statusbyte = read_status ();

 if (statusbyte & SRQ_BIT)
 {
 fp = fopen ("error_list","wb"); /* open error file */
 if (fp == NULL)
 printf ("Error file could not be opened.\n");
/* read error queue until no more errors */
 more_errors = TRUE;
 while (more_errors)
 {
 write_IO (":SYSTEM:ERROR? STRING");
 bytes_read = read_IO (error_str, 64L);

 error_str[bytes_read] = '\0';

 /* write error msg to std IO */
 printf ("Error string:%s\n", error_str);

 if (fp != NULL)
 /* write error msg to file*/
 fprintf (fp,"Error string:%s\n", error_str);

2-32

Sample Programs
Listings of the Sample Programs

 if (error_str[0] == '0')
 {
 /* Clear event registers and queues,except output */
 write_IO("*CLS");

 more_errors = FALSE;

 if (fp != NULL)
 fclose (fp);
 }
 for (i=0;i<64;i++) /* clear string */
 error_str[i] = '\0';

 } /* end while (more_errors) */
 }
 else
 {
 printf (" SRQ not generated by scope.\n "); /* scope did not cause SRQ */
 }
 srq_asserted = check_SRQ (); /* check for SRQ line status */

 }/* end while (srq_asserted) */

}/* end srq_handler */

2-33

Sample Programs
Listings of the Sample Programs

learnstr.c Sample Program

/* learnstr.c */

/*
* This example program initializes the Agilent 86100 scope, runs autoscale to
* acquire a signal, queries for the learnstring, and stores the learnstring
* to disk. It then allows the user to change the setup, then restores the
* original learnstring. It assumes that a signal is attached to the scope.
*/

#include <stdio.h> /* location of: printf (), fopen (), fclose (), fwrite (),getchar */
#include "hpibdecl.h"

void initialize ();
void store_learnstring ();
void change_setup ();
void get_learnstring ();

void main (void)
{

 init_IO (); /* initialize device and interface */
/* Note: routine found in sicl_IO.c or natl_IO.c */

 initialize (); /* initialize the scope and interface, and set up SRQ */
 store_learnstring (); /* request learnstring and store */
 change_setup (); /* request user to change setup */
 get_learnstring (); /* restore learnstring */
 close_IO (); /* close device and interface sessions */

/* Note: routine found in sicl_IO.c or natl_IO.c */

} /* end main */
/*
* Function name: initialize
* Parameters: none
* Return value: none
* Description: This routine initializes the analyzer for proper acquisition of data.
* The instrument is reset to a known state and the interface is cleared.
* System headers are turned off to allow faster throughput and immediate access to the data values requested by queries.
* Autoscale is performed to acquire a waveform. The signal is then
* digitized, and the channel display is turned on following the acquisition.
*/

void initialize ()
{

 write_IO ("*RST"); /* reset scope - initialize to known state */
 write_IO ("*CLS"); /* clear status registers and output queue */

 write_IO (":SYSTem:HEADer ON");/* turn on system headers */

 /* initialize Timebase parameters to center reference, 2 ms full-scale (200 us/div), and 20 us delay */
 write_IO (":TIMebase:REFerence CENTer;RANGe 5e-3;POSition 20e-6");

2-34

Sample Programs
Listings of the Sample Programs

 /* initialize Channel1 1.6v full-scale (200 mv/div); offset -400mv */
 write_IO (":CHANnel1:RANGe 1.6;OFFSet -400e-3");

 /* initialize trigger info: channel1 signal on positive slope at 300mv */
 write_IO (":TRIGger:SOURce FPANel;SLOPe POSitive");
 write_IO (":TRIGger:LEVel-0.40");

 /* initialize acquisition subsystem */
 /* Real time acquisition - no averaging; record length 4096 */
 write_IO (":ACQuire:AVERage OFF;POINts 4096");

} /* end initialize () */

/*
* Function name: store_learnstring
* Parameters: none
* Return value: none
* Description: This routine requests the system setup known as a learnstring.
* The learnstring is read from the scope and stored in a file called Learn2.
*/

void store_learnstring ()
{

 FILE *fp;
 unsigned char setup[MAX_LRNSTR] ={0};
 int actualcnt = 0;

 write_IO (":SYSTem:SETup?"); /* request learnstring */
 actualcnt = read_IO (setup, MAX_LRNSTR);

 fp = fopen ("learn2","wb");

 if (fp != NULL)
 {
 fwrite (setup,sizeof (unsigned char), (int) actualcnt,fp);
 printf ("Learn string stored in file Learn2\n");

 fclose (fp);
 }
 else
 printf ("Error in file open\n");

}/* end store_learnstring */

/*
* Function name: change_setup
* Parameters: none
* Return value: none
* Description: This routine places the scope into local mode to allow the customer to change the system setup.
*/

void change_setup ()
{

2-35

Sample Programs
Listings of the Sample Programs

 printf ("Please adjust setup and press ENTER to continue.\n");
 getchar();

} /* end change_setup */

/*
* Function name: get_learnstring
* Parameters: none
* Return value: none
* Description: This routine retrieves the system setup known as a
* learnstring from a disk file called Learn2. It then restores the system setup to the scope.
*/

void get_learnstring ()
{

 FILE *fp;
 unsigned char setup[MAX_LRNSTR];
 unsigned long count = 0;

 fp = fopen ("learn2","rb");

 if (fp != NULL)
 {
 count = fread (setup,sizeof(unsigned char),MAX_LRNSTR,fp);

 fclose (fp);
 }
 write_lrnstr (setup,count); /* send learnstring */
 write_IO (":RUN");

}/* end get_learnstring */

2-36

Sample Programs
Listings of the Sample Programs

sicl_IO.c Sample Program

/* sicl_IO.c */

#include <stdio.h> /* location of: printf () */
#include <string.h> /* location of: strlen () */
#include "hpibdecl.h"

/* This file contains IO and initialization routines for the SICL libraries. */
/*
* Function name: init_IO
* Parameters: none
* Return value: none
* Description: This routine initializes the SICL environment. It sets up
* error handling, opens both an interface and device session, sets timeout
* values, clears the interface by pulsing IFC, and clears the instrument
* by performing a Selected Device Clear.
*/

void init_IO ()
{

 ionerror (I_ERROR_EXIT); /* set-up interface error handling */

 /* open interface session for verifying SRQ line */
 bus = iopen (INTERFACE);
 if (bus == 0)
 printf ("Bus session invalid\n");

 itimeout (bus, 20000); /* set bus timeout to 20 sec */
 iclear (bus); /* clear the interface - pulse IFC */

 scope = iopen (DEVICE_ADDR); /* open the scope device session */
 if (scope == 0)
 printf ("Scope session invalid\n");

 itimeout (scope, 20000); /* set device timeout to 20 sec */
 iclear (scope); /* perform Selected Device Clear on scope */

} /* end init_IO */

/*
* Function name: write_IO
* Parameters: char *buffer which is a pointer to the character string to be
* output; unsigned long length which is the length of the string to be output
* Return value: none
* Description: This routine outputs strings to the scope device session
* using the unformatted I/O SICL commands.
*/

2-37

Sample Programs
Listings of the Sample Programs

void write_IO (void *buffer)
{
 unsigned long actualcnt;
 unsigned long length;
 int send_end = 1;
 length = strlen (buffer);
 iwrite (scope, buffer, length, send_end, &actualcnt);

} /* end write_IO */

/*
* Function name: write_lrnstr
* Parameters: char *buffer which is a pointer to the character string to be
* output; long length which is the length of the string to be output
* Return value: none
* Description: This routine outputs a learnstring to the scope device
* session using the unformatted I/O SICL commands.
*/

void write_lrnstr (void *buffer, long length)
{

 unsigned long actualcnt;
 int send_end = 1;

 iwrite (scope, buffer, (unsigned long) length,
 send_end, &actualcnt);

} /* end write_lrnstr () */

/*
* Function name: read_IO
* Parameters: char *buffer which is a pointer to the character string to be
* input; unsigned long length which indicates the max length of the string to be input
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the scope device session using SICL commands.
*/

int read_IO (void *buffer,unsigned long length)
{

 int reason;
 unsigned long actualcnt;

 iread (scope,buffer,length,&reason,&actualcnt);

 return((int) actualcnt);
}

/*
* Function name: check_SRQ
* Parameters: none
* Return value: integer indicating if bus SRQ line was asserted
* Description: This routine checks for the status of SRQ on the bus and returns a value to indicate the status.
*/

2-38

Sample Programs
Listings of the Sample Programs

int check_SRQ()
{

 int srq_asserted;

 /* check for SRQ line status */
 ihpibbusstatus(bus, I_HPIB_BUS_SRQ, &srq_asserted);

 return (srq_asserted);

} /* end check_SRQ () */

/*
* Function name: read_status
* Parameters: none
* Return value: unsigned char indicating the value of status byte
* Description: This routine reads the scope status byte and returns the status.
*/

unsigned char read_status ()
{

 unsigned char statusbyte;

 /* Always read the status byte from instrument */
 /* NOTE: ireadstb uses serial poll to read status byte - this should clear bit 6 to allow another SRQ. */

 ireadstb (scope, &statusbyte);
 return (statusbyte);

} /* end read_status () */

/*
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device and interface sessions for the
* SICL environment and calls the routine _siclcleanup which de-allocates
* resources used by the SICL environment.
*/

void close_IO ()
{

 iclose (scope); /* close device session */
 iclose (bus); /* close interface session */

 _siclcleanup (); /* required for 16-bit applications */

} /* end close_SICL () */

2-39

Sample Programs
Listings of the Sample Programs

natl_IO.c Sample Program

/* natl_IO.c */

#include <stdio.h> /* location of: printf () */
#include <string.h> /* location of: strlen () */
#include "hpibdecl.h"

/* This file contains IO and initialization routines for the NI488.2 commands. */
/*
* Function name: hpiberr
* Parameters: char* - string describing error
* Return value: none
* Description: This routine outputs error descriptions to an error file.
*/

void hpiberr(char *buffer)
{

 printf ("Error string: %s\n",buffer);

} /* end hpiberr () */

/*
* Function name: init_IO
* Parameters: none
* Return value: none
* Description: This routine initializes the NI environment. It sets up error
* handling, opens both an interface and device session, sets timeout values
* clears the interface by pulsing IFC, and clears the instrument by performing
* a Selected Device Clear.
*/

void init_IO ()
{

 bus = ibfind (INTERFACE); /* open and initialize GPIB board */
 if (ibsta & ERR)
 hpiberr ("ibfind error");

 ibconfig (bus, IbcAUTOPOLL, 0); /* turn off autopolling */

 ibsic (bus); /* clear interface - pulse IFC */
 if (ibsta & ERR)
 {
 hpiberr ("ibsic error");
 }

 /* open device session */
 scope = ibdev (board_index, prim_addr, second_addr, timeout,
 eoi_mode, eos_mode);
 if (ibsta & ERR)
 {
 hpiberr ("ibdev error");
 }

2-40

Sample Programs
Listings of the Sample Programs

 ibclr (scope); /* clear the device(scope) */

 if (ibsta & ERR)
 {
 hpiberr ("ibclr error");
 }

} /* end init_IO */

/*
* Function name: write_IO
* Parameters: void *buffer which is a pointer to the character string to be output
* Return value: none
* Description: This routine outputs strings to the scope device session.
*/
void write_IO (void *buffer)
{

 long length;

 length = strlen (buffer);

 ibwrt (scope, buffer, (long) length);
 if (ibsta & ERR)
 {
 hpiberr ("ibwrt error");
 }

} /* end write_IO() */

/*
* Function name: write_lrnstr
* Parameters: void *buffer which is a pointer to the character string to
* be output; length which is the length of the string to be output
* Return value: none
* Description: This routine outputs a learnstring to the scope device session.
*/
void write_lrnstr (void *buffer, long length)
{

 ibwrt (scope, buffer, (long) length);
 if (ibsta & ERR)
 {
 hpiberr ("ibwrt error");
 }

} /* end write_lrnstr () */

/*
* Function name: read_IO
* Parameters: char *buffer which is a pointer to the character string to be input;
* unsigned long length which indicates the max length of the string to be input
* Return value: integer which indicates the actual number of bytes read
* Description: This routine inputs strings from the scope device session.
*/

2-41

Sample Programs
Listings of the Sample Programs

int read_IO (void *buffer,unsigned long length)
{
 ibrd (scope, buffer, (long) length);

 return (ibcntl);

} /* end read_IO () */

/*
* Function name: check_SRQ
* Parameters: none
* Return value: integer indicating if bus SRQ line was asserted
* Description: This routine checks for the status of SRQ on the bus and
* returns a value to indicate the status.
*/

int check_SRQ ()
{

 int srq_asserted;
 short control_lines = 0;

 iblines (bus, &control_lines);

 if (control_lines & BusSRQ)
 srq_asserted = TRUE;
 else
 srq_asserted = FALSE;

 return (srq_asserted);

} /* end check_SRQ () */

/*
* Function name: read_status
* Parameters: none
* Return value: unsigned char indicating the value of status byte
* Description: This routine reads the scope status byte and returns the status.
*/
unsigned char read_status ()
{

 unsigned char statusbyte;

 /* Always read the status byte from instrument */

 ibrsp (scope, &statusbyte);

 return (statusbyte);

} /* end read_status () */

2-42

Sample Programs
Listings of the Sample Programs

/*
* Function name: close_IO
* Parameters: none
* Return value: none
* Description: This routine closes device session.
*/

void close_IO ()
{

 ibonl (scope,0); /* close device session */

} /* end close_IO () */

2-43

Sample Programs
Listings of the Sample Programs

multidatabase.c Sample Program

/*multidatabase.c*/

/*
* This example program demonstrates the use of the Multidatabase functionality of the
* Agilent 86100 DCA. The program sets up an acquitision of 200 waveforms on two
* channels, first serially, then in parallel. A mask test and simple
* measurements are made on each channel. NOTE: the timeout value must
* be set to a higher value (~30s) so that there is enough time to acquire the
* data.
*/

#include <stdio.h>//standard c++ io funcitons
#include <time.h>//time funcitons

//GPIB prototypes (from IO file)
void init_IO ();
void write_IO (char*);
int read_IO (char*, unsigned long);
void close_IO ();

//prototypes
void initialize();
int acquire_serial();
int acquire_parallel();

void main()
{

int serialTime, parallelTime; //declarations
init_IO(); //initial the interface and open GPIB communications
initialize(); //set up the instrument
serialTime = acquire_serial();//acquire the data in serial
parallelTime = acquire_parallel();//acquire the data in parallel
close_IO(); //close GPIB communications

printf("\nSerial Acquisition Time: %d ms\nParallel Acquisition Time: %d ms\n",
serialTime, parallelTime);//display acquisition times

printf("Time Savings: %d ms\n", serialTime-parallelTime);
//display the time savings

}//main()

/*
* Function Name: initialize
* Paramters: none
* Returned value: none
* Description: This method sets up the channels and acquisition limits of the
* DCA
*/

void initialize()
{

write_IO("*RST");//reset the DCA

2-44

Sample Programs
Listings of the Sample Programs

write_IO("*CLS");//clear the status registers
write_IO("SYSTem:MODE EYE");//switch to Eye/mask mode

write_IO("STOP");//stop acquistion
write_IO("CDISplay");//clear the display

write_IO("ACQuire:RUNTil WAVeforms,200");
//set the acquistion limit to 200 waveforms

write_IO("CHANnel1:FSELect 1");//choose filter #1 on channel 1
write_IO("CHANnel1:FILTer ON");//turn on the filter

write_IO("CHANnel3:FSELect 1");//choose filter #1 on channel 3
write_IO("CHANnel3:FILTer ON");//turn on the filter

}//initialize()

/*
* Funciton Name: acquireSerial
* Parameters: none
* Returned value: int - the time to acquire the data
* Description: This routine turns on channel 1, performs an autoscale, acquires
* 200 waveforms, performs a mask test, and then performs the measurements. The
* process is then repeated for channel 2.
*/

int acquire_serial()
{

printf("Serial Acquisition in progress\n");//status report

//decalrations
int start=clock(),stop;
char Msk_hits1[16],Crss_pct1[16],Ext_rat1[16],buff[32];
char Msk_hits2[16],Crss_pct2[16],Ext_rat2[16];

write_IO("CHANnel1:DISPlay ON");//turn on channel one
write_IO("RUN"); //start acquistion
write_IO("AUToscale"); //Autoscale
write_IO("*OPC?"); //query for completion
read_IO(buff,5); //read completion response

write_IO("MTESt:LOAD \"STM016_OC48.msk\"");//load OC-48 mask
write_IO("MTESt:START"); //start mask test
write_IO("MTESt:COUNt:FSAMples?");//query the number of failed samples
Msk_hits1[read_IO(Msk_hits1, 15)]=0;//get the number of mask hits
write_IO("MTESt:TEST OFF"); //trun off the maks test

write_IO("MEASure:CGRade:CROSsing?");//query the crossing percentage
Crss_pct1[read_IO(Crss_pct1,15)]=0;//get the crossing percentage

write_IO("MEASure:CGRade:ERATio? DECibel");//query the extinction ratio
Ext_rat1[read_IO(Ext_rat1,15)]=0;//get the extinction ratio

write_IO("CHANnel3:DISPlay ON");//turn on channel three
write_IO("RUN"); //start acquistion
write_IO("AUToscale"); //Autoscale

2-45

Sample Programs
Listings of the Sample Programs

write_IO("*OPC?"); //query for completion
read_IO(buff,5); //read completion response

write_IO("MTESt:TEST ON"); //start mask test
write_IO("MTESt:COUNt:FSAMples?");//query the number of failed samples
Msk_hits2[read_IO(Msk_hits2, 15)]=0;//get the number of mask hits

write_IO("MEASure:CGRade:CROSsing?");//query the crossing percentage
Crss_pct2[read_IO(Crss_pct2,15)]=0;//get the crossing percentage

write_IO("MEASure:CGRade:ERATio? DECibel");//query the extinction ratio
Ext_rat2[read_IO(Ext_rat2,15)]=0;//get the extinction ratio

stop = clock();

//display the results
printf("Channel 1:\n Mask hits:%s Crossing %%:%s Extinction Ratio:%s\n",

Msk_hits1,Crss_pct1,Ext_rat1);
printf("Channel 3:\n Mask hits:%s Crossing %%:%s Extinction Ratio:%s\n",

Msk_hits2,Crss_pct2,Ext_rat2);

return (stop-start);
}//acquireSerial()

/*
* Funciton Name: acquireParallel
* Parameters: none
* Returned value: int - the time to acquire the data
* Description: This routine is identical to acquireSerial, except that the data
* is aquired at the same time.
*/

int acquire_parallel()
{

printf("Parallel Acquisition In progress\n");//status report

//decalrations
int start=clock(),stop;
char Msk_hits1[16],Crss_pct1[16],Ext_rat1[16],buff[32];
char Msk_hits2[16],Crss_pct2[16],Ext_rat2[16];

write_IO("CHANnel1:DISPlay ON");//turn on channel one
write_IO("CHANnel3:DISPlay ON, APPEnd");//turn on channel three
write_IO("RUN"); //start acquistion
write_IO("AUToscale"); //Autoscale
write_IO("CALibrate:SKEW:AUTO");//auto deskew the two channels
write_IO("*OPC?"); //query for completion
read_IO(buff,5); //read completion response

write_IO("MTESt:LOAD \"STM016_OC48.msk\"");//load OC-48 mask
write_IO("MTESt:SOURce CHANnel1");//set mask test channel1
write_IO("MTESt:START"); //start mask test
write_IO("MTESt:COUNt:FSAMples?");//query the number of failed samples
Msk_hits1[read_IO(Msk_hits1, 15)]=0;//get the number of mask hits

write_IO("MTESt:SOURce CHANnel3");//mask test channel3

2-46

Sample Programs
Listings of the Sample Programs

write_IO("MTESt:TEST ON"); //start mask test
write_IO("MTESt:COUNt:FSAMples?");//query the number of failed samples
Msk_hits2[read_IO(Msk_hits2, 15)]=0;//get the number of mask hits

write_IO("MEASure:CGRade:SOURce CHANnel1"); //measure Channel 1
write_IO("MEASure:CGRade:CROSsing?");//query the crossing percentage
Crss_pct1[read_IO(Crss_pct1,15)]=0;//get the crossing percentage

write_IO("MEASure:CGRade:ERATio? DECibel");//query the extinction ratio
Ext_rat1[read_IO(Ext_rat1,15)]=0;//get the extinction ratio

write_IO("MEASure:CGRade:SOURce CHANnel3"); //measure Channel 1
write_IO("MEASure:CGRade:CROSsing?");//query the crossing percentage
Crss_pct2[read_IO(Crss_pct2,15)]=0;//get the crossing percentage

write_IO("MEASure:CGRade:ERATio? DECibel");//query the extinction ratio
Ext_rat2[read_IO(Ext_rat2,15)]=0;//get the extinction ratio

stop = clock();

//display the results
printf("Channel 1:\n Mask hits:%s Crossing %%:%s Extinction Ratio:%s\n",

Msk_hits1,Crss_pct1,Ext_rat1);
printf("Channel 3:\n Mask hits:%s Crossing %%:%s Extinction Ratio:%s\n",

Msk_hits2,Crss_pct2,Ext_rat2);

return (stop-start); //return the total run time

return 1;
}//acquireParallel()

2-47

Sample Programs
Listings of the Sample Programs

init.bas Sample Program

10 !file: init
20 !
30 !
40 ! This program demonstrates the order of commands suggested for operation of
50 ! the Agilent 86100 analyzer via GPIB. This program initializes the scope, acquires
60 ! data, performs automatic measurements, and transfers and stores the data on the
70 ! PC as time/voltage pairs in a comma-separated file format useful for spreadsheet
80 ! applications. It assumes an interface card at interface select code 7, an
90 ! Agilent 86100 scope at address 7, and the Agilent 86100 cal signal connected to Channel 1.
100 !
110 !
120 !
130 COM /Io/@Scope,@Path,Interface
140 COM /Raw_data/ INTEGER Data(4095)
150 COM /Converted_data/ REAL Time(4095),Volts(4095)
160 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref,Yorg
170 COM /Variables/ INTEGER Record_length
180 !
190 !
200 CALL Initialize
210 CALL Acquire_data
220 CALL Auto_msmts
230 CALL Transfer_data
240 CALL Convert_data
250 CALL Store_csv
260 CALL Close
270 END
280 !
290 !!
300 !
310 !
320 ! BEGIN SUBPROGRAMS
330 !
340 !!!
350 !
360 !
370 ! Subprogram name: Initialize
380 ! Parameters: none
390 ! Return value: none
400 ! Description: This routine initializes the interface and the scope. The instrument
410 ! is reset to a known state and the interface is cleared. System headers
420 ! are turned off to allow faster throughput and immediate access to the
430 ! data values requested by the queries. The analyzer time base,
440 ! channel, and trigger subsystems are then configured. Finally, the
450 ! acquisition subsystem is initialized.
460 !
470 !
480 SUB Initialize
490 COM /Io/@Scope,@Path,Interface
500 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref,Yorg
510 COM /Variables/ INTEGER Record_length

2-48

Sample Programs
Listings of the Sample Programs

520 Interface=7
530 ASSIGN @Scope TO 707
540 RESET Interface
550 CLEAR @Scope
560 OUTPUT @Scope;"*RST"
570 OUTPUT @Scope;"*CLS"
580 OUTPUT @Scope;":SYSTem:HEADer OFF"
590 !Initialize Timebase: center reference, 2 ms full-scale (200 us/div), 20 us delay
600 OUTPUT @Scope;":TIMebase:REFerence CENTer;RANGe 2e-3;POSition 20e-6"
610 ! Initialize Channel1: 1.6V full-scale (200mv/div), -415mv offset
620 OUTPUT @Scope;":CHANnel1:RANGe 1.6;OFFSet -415e-3"
630 !Initialize Trigger: Edge trigger, channel1 source at -415mv
640 OUTPUT @Scope;":TRIGger:SOURce FPANel;SLOPe POSitive"
650 OUTPUT @Scope;":TRIGger:LEVel-0.415"
660 ! Initialize acquisition subsystem
665 ! Real time acquisition, Averaging off, memory depth 4096
670 OUTPUT @Scope;":ACQuire:AVERage OFF;POINts 4096"
680 Record_length=4096
690 SUBEND
700 !
710 !
720 !!!
730 !
740 !
750 ! Subprogram name: Acquire_data
760 ! Parameters: none
770 ! Return value: none
780 ! Description: This routine acquires data according to the current instrument
790 ! setting. It uses the root level :DIGitize command. This command
800 ! is recommended for acquisition of new data because it will initialize
810 ! the data buffers, acquire new data, and ensure that acquisition
820 ! criteria are met before acquisition of data is stopped. The captured
830 ! data is then available for measurements, storage, or transfer to a
840 ! PC. Note that the display is automatically turned off by the :DIGitize
850 ! command and must be turned on to view the captured data.
860 !
870 !
880 SUB Acquire_data
890 COM /Io/@Scope,@Path,Interface
900 OUTPUT @Scope;":DIGitize CHANnel1"
910 OUTPUT @Scope;":CHANnel1:DISPlay ON"
920 SUBEND
930 !
940 !
950 !!!
960 !
970 !
980 ! Subprogram name: Auto_msmts
990 ! Parameters: none
1000 ! Return value: none
1010 ! Description: This routine performs automatic measurements of volts peak-to-peak
1020 ! and frequency on the acquired data. It also demonstrates two methods
1030 ! of error detection when using automatic measurements.
1040 !
1050 !
1060 SUB Auto_msmts

2-49

Sample Programs
Listings of the Sample Programs

1070 COM /Io/@Scope,@Path,Interface
1080 REAL Period,Vpp
1090 DIM Vpp_str$[64]
1100 DIM Period_str$[64]
1110 Bytes_read=0
1120 !
1130 ! Error checking on automatic measurements can be done using one of two methods.
1140 ! The first method requires that you turn on results in the Measurement subsystem
1150 ! using the command ":MEASure:SEND ON". When this is on, the scope will return the
1160 ! measurement and a result indicator. The result flag is zero if the measurement
1170 ! was successfully completed, otherwise a non-zero value is returned which indicates
1180 ! why the measurement failed. See the Programmer's Manual for descriptions of result
1190 ! indicators. The second method simply requires that you check the return value of
1200 ! the measurement. Any measurement not made successfully will return with the value
1210 ! +9.999e37. This could indicate that either the measurement was unable to be
1220 ! performed or that insufficient waveform data was available to make the measurement.
1230 !
1240 ! METHOD ONE
1250 !
1260 OUTPUT @Scope;":MEASure:SEND ON" !turn on results
1270 OUTPUT @Scope;":MEASure:VPP? CHANnel1" !Query volts peak-to-peak
1280 ENTER @Scope;Vpp_str$
1290 Bytes_read=LEN(Vpp_str$) !Find length of string
1300 CLEAR SCREEN
1310 IF Vpp_str$[Bytes_read;1]="0" THEN !Check result value
1320 PRINT
1330 PRINT "VPP is ";VAL(Vpp_str$[1,Bytes_read-1])
1340 PRINT
1350 ELSE
1360 PRINT
1370 PRINT "Automated vpp measurement error with result ";Vpp_str$[Bytes_read;1]
1380 PRINT
1390 END IF
1400 !
1410 !
1420 OUTPUT @Scope;":MEASure:PERiod? CHANnel1" !Query frequency
1430 ENTER @Scope;Period_str$
1440 Bytes_read=LEN(Period_str$) !Find string length
1450 IF Period_str$[Bytes_read;1]="0" THEN !Determine result value
1460 PRINT
1470 PRINT "Period is ";VAL(Period_str$[1,Bytes_read-1])
1480 PRINT
1490 ELSE
1500 PRINT
1510 PRINT "Automated period measurement error with result ";Period_str$[Bytes_read;1]
1520 PRINT
1530 END IF
1540 !
1550 !
1560 ! METHOD TWO
1570 !
1580 OUTPUT @Scope;":MEASure:SEND OFF" !turn off results
1590 OUTPUT @Scope;":MEASure:VPP? CHANnel1" !Query volts peak-to-peak
1600 ENTER @Scope;Vpp
1610 IF Vpp<9.99E+37 THEN
1620 PRINT

2-50

Sample Programs
Listings of the Sample Programs

1630 PRINT "VPP is ";Vpp
1640 PRINT
1650 ELSE
1660 PRINT
1670 PRINT "Automated vpp measurement error ";Vpp
1680 PRINT
1690 END IF
1700 OUTPUT @Scope;":MEASure:PERiod? CHANnel1"
1710 ENTER @Scope;Period
1720 IF Freq<9.99E+37 THEN
1730 PRINT
1740 PRINT "Period is ";Period
1750 PRINT
1760 ELSE
1770 PRINT
1780 PRINT "Automated period measurement error";Period
1790 PRINT
1800 END IF
1810 SUBEND
1820 !
1830 !
1840 !!
1850 !
1860 !
1870 ! Subprogram name: Transfer_data
1880 ! Parameters: none
1890 ! Return value: none
1900 ! Description: This routine transfers the waveform data and conversion factors to
1910 ! to PC.
1920 !
1930 !
1940 SUB Transfer_data
1950 COM /Io/@Scope,@Path,Interface
1960 COM /Raw_data/ INTEGER Data(4095)
1970 COM /Converted_data/ REAL Time(4095),Volts(4095)
1980 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref,Yorg
1990 COM /Variables/ INTEGER Record_length
2000 ! define waveform data source and format
2010 OUTPUT @Scope;":WAVeform:SOURce CHANnel1"
2020 OUTPUT @Scope;":WAVeform:FORMat WORD"
2030 ! request values needed to convert raw data to real
2040 OUTPUT @Scope;":WAVeform:XINCrement?"
2050 ENTER @Scope;Xinc
2060 OUTPUT @Scope;":WAVeform:XORigin?"
2070 ENTER @Scope;Xorg
2080 OUTPUT @Scope;":WAVeform:XREFerence?"
2090 ENTER @Scope;Xref
2100 OUTPUT @Scope;":WAVeform:YINCrement?"
2110 ENTER @Scope;Yinc
2120 OUTPUT @Scope;":WAVeform:YORigin?"
2130 ENTER @Scope;Yorg
2140 OUTPUT @Scope;":WAVeform:YREFerence?"
2150 ENTER @Scope;Yref
2160 !
2170 ! request data
2180 OUTPUT @Scope;":WAVeform:DATA?"

2-51

Sample Programs
Listings of the Sample Programs

2190 ENTER @Scope USING "#,1A";First_chr$!ignore leading #
2200 ENTER @Scope USING "#,1D";Header_length !input number of bytes in header value
2210 ENTER @Scope USING "#,"&VAL$(Header_length)&"D";Record_length !Record length in bytes
2220 Record_length=Record_length/2 !Record length in words
2230 ENTER @Scope USING "#,W";Data(*)
2240 ENTER @Scope USING "#,A";Term$!Enter terminating character
2250 !
2260 SUBEND
2270 !
2280 !
2290 !!
2300 !
2310 !
2320 ! Subprogram name: Convert_data
2330 ! Parameters: none
2340 ! Return value: none
2350 ! Description: This routine converts the waveform data to time/voltage information
2360 ! using the values Xinc, Xref, Xorg, Yinc, Yref, and Yorg used to describe
2370 ! the raw waveform data.
2380 !
2390 !
2400 SUB Convert_data
2410 COM /Io/@Scope,@Path,Interface
2420 COM /Raw_data/ INTEGER Data(4095)
2430 COM /Converted_data/ REAL Time(4095),Volts(4095)
2440 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref,Yorg
2450 COM /Variables/ INTEGER Record_length
2460 !
2470 FOR I=0 TO Record_length-1
2480 Time(I)=(((I)-Xref)*Xinc)+Xorg
2490 Volts(I)=((Data(I)-Yref)*Yinc)+Yorg
2500 NEXT I
2510 SUBEND
2520 !
2530 !
2540 !!
2550 !
2560 !
2570 ! Subprogram name: Store_csv
2580 ! Parameters: none
2590 ! Return value: none
2600 ! Description: This routine stores the time and voltage information about the waveform
2610 ! as time/voltage pairs in a comma-separated variable file format.
2620 !
2630 !
2640 SUB Store_csv
2650 COM /Io/@Scope,@Path,Interface
2660 COM /Converted_data/ REAL Time(4095),Volts(4095)
2670 COM /Variables/ REAL Xinc,Xref,Xorg,Yinc,Yref,Yorg
2680 COM /Variables/ INTEGER Record_length
2690 !Create a file to store pairs in
2700 ON ERROR GOTO Cont
2710 PURGE "Pairs.csv"
2720 Cont: OFF ERROR
2730 CREATE "Pairs.csv",Max_length
2740 ASSIGN @Path TO "Pairs.csv";FORMAT ON

2-52

Sample Programs
Listings of the Sample Programs

2750 !Output data to file
2760 FOR I=0 TO Record_length-1
2770 OUTPUT @Path;Time(I),Volts(I)
2780 NEXT I
2790 SUBEND
2800 !
2810 !
2820 !!!
2830 !
2840 !
2850 ! Subprogram name: Close
2860 ! Parameters: none
2870 ! Return value: none
2880 ! Description: This routine closes the IO paths.
2890 !
2900 !
2910 SUB Close
2920 COM /Io/@Scope,@Path,Interface
2930 !
2940 RESET Interface
2950 ASSIGN @Path TO *
2960 SUBEND

2-53

Sample Programs
Listings of the Sample Programs

srq.bas Sample Program

10 !File: srq.bas
20 !
30 ! This program demonstrates how to set up and check Service Requests from
40 ! the scope. It assumes an interface select code of 7 with a scope at
50 ! address 7. It also assumes a signal is connected to the scope.
60 !
70 !
80 COM /Io/@Scope,Interface
90 COM /Variables/Temp
100 CALL Initialize
110 CALL Setup_srq
120 ON INTR Interface CALL Srq_handler !Set up routine to handle interrupt
130 ENABLE INTR Interface;2 !Enable SRQ Interrupt for Interface
140 CALL Create_srq
150 CALL Close
160 END
170 !
180 !!!
190 !
200 ! BEGIN SUBPROGRAMS
210 !
220 !!
230 !
240 !
250 ! Subprogram name: Initialize
260 ! Parameters: none
270 ! Return value: none
280 ! Description: This routine initializes the interface and the scope.
290 ! The instrument is reset to a known state and the interface is
300 ! cleared. System headers are turned off to allow faster throughput
310 ! and immediate access to the data values requested by the queries.
320 !
330 !
340 SUB Initialize
350 COM /Io/@Scope,Interface
360 ASSIGN @Scope TO 707
370 Interface=7
380 RESET Interface
390 CLEAR @Scope
400 OUTPUT @Scope;"*RST"
410 OUTPUT @Scope;"*CLS"
420 OUTPUT @Scope;":SYSTem:HEADer OFF"
430 OUTPUT @Scope;":AUToscale"
440 SUBEND
450 !
460 !
470 !
480 !!!
490 !
500 ! Subprogram name: Setup_srq
510 ! Parameters: none

2-54

Sample Programs
Listings of the Sample Programs

520 ! Return value: none
530 ! Description: This routine sets up the scope to generate Service Requests.
540 ! It sets the Service Request Enable Register Event Status Bit
550 ! and the Standard Event Status Enable REgister to allow SRQs on
560 ! Command or Query errors.
570 !
580 !
590 SUB Setup_srq
600 COM /Io/@Scope,Interface
610 OUTPUT @Scope;"*SRE 32" !Enable Service Request Enable Registers - Event Status bit
620 !
630 ! Enable Standard Event Status Enable Register:
640 ! enable bit 4 - Command Error - value 32
650 ! bit 1 - Query Error - value 4
660 OUTPUT @Scope;"*ESE 36"
670 SUBEND
680 !
690 !
700 !
710 !!
720 !
730 !
740 ! Subprogram name: Create_srq
750 ! Parameters: none
760 ! Return value: none
770 ! Description: This routine will send an illegal command to the scope to
780 ! show how to detect and handle an SRQ. A query is sent to
790 ! the scope which is then followed by another command causing
800 ! a query interrupt error. An illegal command header is then
810 ! sent to demonstrate how to handle multiple errors in the error queue.
820 !
830 !
840 !
850 SUB Create_srq
860 COM /Io/@Scope,Interface
870 DIM Buf$[256]
880 OUTPUT @Scope;":CHANnel2:DISPlay?"
890 OUTPUT @Scope;":CHANnel2:DISPlay OFF" !send query interrupt
900 OUTPUT @Scope;":CHANnel:DISPlay OFF" !send illegal header
910 ! Do some stuff to allow time for SRQ to be recognized
920 !
930 OUTPUT @Scope;"*IDN?" !Request IDN to verify communication
940 ENTER @Scope;Buf$!NOTE: There is a leading zero to this query response
950 PRINT !which represents the response to the interrupted query above
960 PRINT Buf$
970 PRINT
980 SUBEND
990 !
1000 !
1010 !
1020 !!!
1030 !
1040 !
1050 ! Subprogram name: Srq_handler
1060 ! Parameters: none
1070 ! Return value: none

2-55

Sample Programs
Listings of the Sample Programs

1080 ! Description: This routine verifies the status of the SRQ line. It then checks
1090 ! the status byte of the scope to determine if the scope caused the
1100 ! SRQ. Note that using a SPOLL to read the status byte of the scope
1110 ! clears the SRQ and allows another to be generated. The error queue
1120 ! is read until all errors have been cleared. All event registers and
1130 ! queues, except the output queue, are cleared before control is returned
1140 ! to the main program.
1150 !
1160 !
1170 !
1180 SUB Srq_handler
1190 COM /Io/@Scope,Interface
1200 DIM Error_str$[64]
1210 INTEGER Srq_asserted,More_errors
1220 Status_byte=SPOLL(@Scope)
1230 IF BIT(Status_byte,6) THEN
1240 More_errors=1
1250 WHILE More_errors
1260 OUTPUT @Scope;":SYSTem:ERROR? STRING"
1270 ENTER @Scope;Error_str$
1280 PRINT
1290 PRINT Error_str$
1300 IF Error_str$[1,1]="0" THEN
1310 OUTPUT @Scope;"*CLS"
1320 More_errors=0
1330 END IF
1340 END WHILE
1350 ELSE
1360 PRINT
1370 PRINT "Scope did not cause SRQ"
1380 PRINT
1390 END IF
1400 ENABLE INTR Interface;2 !re-enable SRQ
1410 SUBEND
1420 !
1430 !
1440 !!
1450 !
1460 ! Subprogram name: Close
1470 ! Parameters: none
1480 ! Return value: none
1490 ! Description: This routine resets the interface.
1500 !
1510 !
1520 !
1530 SUB Close
1540 COM /Io/@Scope,Interface
1550
1560 RESET Interface
1570 SUBEND
1580 !
1590 !
1600 !!

lrn_str.bas Sample Program

10 !FILE: lrn_str.bas
20 !
30 !THIS PROGRAM WILL INITIALIZE THE SCOPE, AUTOSCALE, AND DIGITIZE THE WAVEFORM
40 !INFORMATION. IT WILL THEN QUERY THE INSTRUMENT FOR THE LEARNSTRING AND WILL
50 !SAVE THE INFORMATION TO A FILE. THE PROGRAM WILL THEN PROMPT YOU TO CHANGE
60 !THE SETUP THEN RESTORE THE ORIGINAL LEARNSTRING CONFIGURATION. IT ASSUMES
70 !AN Agilent 86100 at ADDRESS 7, GPIB INTERFACE at 7, AND THE CAL SIGNAL ATTACHED TO
80 !CHANNEL 1.
90 !
100 !
110 COM /Io/@Scope,@Path,Interface
120 COM /Variables/Max_length
130 CALL Initialize
140 CALL Store_lrnstr
150 CALL Change_setup
160 CALL Get_lrnstr
170 CALL Close
180 END
190 !
200 !
210 !!
220 !
230 ! BEGIN SUBROUTINES
240 !
250 !!
260 ! Subprogram name: Initialize
270 ! Parameters: none
280 ! Return value: none
290 ! Description: This routine initializes the path descriptions and resets the
300 ! interface and the scope. It performs an autoscale on the signal,
310 ! acquires the data on channel 1, and turns on the display.
320 ! NOTE: This routine also turns on system headers. This allows the
330 ! string ":SYSTEM:SETUP " to be returned with the learnstring so the
340 ! return string is in the proper format.
350 !
360 SUB Initialize
370 COM /Io/@Scope,@Path,Interface
380 COM /Variables/Max_length
390 Max_length=14000
400 ASSIGN @Scope TO 707
410 Interface=7
420 RESET Interface
430 CLEAR @Scope
440 OUTPUT @Scope;"*RST"
450 OUTPUT @Scope;"*CLS"
460 OUTPUT @Scope;":SYSTem:HEADer ON"
470 OUTPUT @Scope;":AUToscale"
480 SUBEND
490 !
500 !
510 !!!

2-57

Sample Programs
Listings of the Sample Programs

520 !
530 !
540 ! Subprogram name: Store_lrnstr
550 ! Parameters: none
560 ! Return value: none
570 ! Description: This routine creates a file in which to store the learnstring
580 ! configuration (Filename:Lrn_strg). It requests the learnstring
590 ! and inputs the configuration to the PC. Finally, it stores the
600 ! configuration to the file.
610 !
620 SUB Store_lrnstr
630 COM /Io/@Scope,@Path,Interface
640 COM /Variables/Max_length
650 ON ERROR GOTO Cont
660 PURGE "Lrn_strg"
670 Cont: OFF ERROR
680 CREATE BDAT "Lrn_strg",1,14000
690 DIM Setup$[14000]
700 ASSIGN @Path TO "Lrn_strg"
710 OUTPUT @Scope;":SYSTem:SETup?"
720 ENTER @Scope USING "-K";Setup$
730 OUTPUT @Path,1;Setup$
740 CLEAR SCREEN
750 PRINT "Learn string stored in file: Lrn_strg"
760 SUBEND
770 !
780 !
790 !!
800 !
810 ! Subprogram name: Change_setup
820 ! Parameters: none
830 ! Return value: none
840 ! Description: This subprogram requests that the user change the
850 ! scope setup, then press a key to continue.
860 !
870 !
880 SUB Change_setup
890 COM /Io/@Scope,@Path,Interface
900
910 PRINT
920 PRINT "Please adjust setup and press Continue to resume."
930 PAUSE
940 SUBEND
950 !
960 !
970 !!
980 !
990 ! Subprogram name: Get_lrnstr
1000 ! Parameters: none
1010 ! Return value: none
1020 ! Description: This subprogram loads a learnstring from the
1030 ! file "Lrn_strg" to the scope.
1040 !
1050 !
1060 SUB Get_lrnstr
1070 COM /Io/@Scope,@Path,Interface

2-58

Sample Programs
Listings of the Sample Programs

1080 COM /Variables/Max_length
1090 DIM Setup$[14000]
1100 ENTER @Path,1;Setup$
1110 OUTPUT @Scope USING "#,-K";Setup$
1120 OUTPUT @Scope;":RUN"
1130 SUBEND
1140 !
1150 !
1160 !!
1170 !
1180 !
1190 ! Subprogram name: Close
1200 ! Parameters: none
1210 ! Return value: none
1220 ! Description: This routine resets the interface, and closes all I/O paths.
1230 !
1240 !
1250 !
1260 SUB Close
1270 COM /Io/@Scope,@Path,Interface
1280
1290 RESET Interface
1300 ASSIGN @Path TO *
1310 SUBEND
1320 !
1330 !!

3

Receiving Common Commands 3-2
Status Registers 3-2
Common Commands 3-3

*CLS (Clear Status) 3-3
*ESE (Event Status Enable) 3-3
*ESR? (Event Status Register) 3-4
*IDN? (Identification Number) 3-5
*LRN? (Learn) 3-6
*OPC (Operation Complete) 3-7
*OPT? (Option) 3-8
*RCL (Recall) 3-8
*RST (Reset) 3-9
*SAV (Save) 3-13
*SRE (Service Request Enable) 3-13
*STB? (Status Byte) 3-14
*TRG (Trigger) 3-15
*TST? (Test) 3-16
*WAI (Wait-to-Continue) 3-16

Common Commands

3-2

Common Commands

Common Commands

Common commands are defined by the IEEE 488.2 standard. They control generic
device functions that are common to many different types of instruments. Common
commands can be received and processed by the analyzer, whether they are sent over
the GPIB as separate program messages or within other program messages.

Receiving Common Commands

Common commands can be received and processed by the analyzer, whether they are
sent over the GPIB as separate program messages or within other program messages. If
a subsystem is currently selected and a common command is received by the analyzer,
the analyzer remains in the selected subsystem. For example, if the program message

"ACQUIRE:AVERAGE ON;*CLS;COUNT 1024"

is received by the analyzer, the analyzer enables averaging, clears the status informa-
tion, then sets the number of averages without leaving the selected subsystem.

Status Registers

The following two status registers used by common commands have an enable (mask)
register. By setting bits in the enable register, the status information can be selected
for use. Refer to “Status Reporting” on page 1-20 for a complete discussion of status.

Table 3-1. Status Registers

Status Register Enable Register

Event Status Register Event Status Enable Register
Status Byte Register Service Request Enable Register

3-3

Common Commands
*CLS (Clear Status)

Common Commands

*CLS (Clear Status)
Command *CLS

The *CLS command clears all status and error registers.

Example This example clears the status data structures of the analyzer.

10 OUTPUT 707;"*CLS"
20 END

See Also Refer to “Error Messages” on page 1-60 for a complete discussion of status.

*ESE (Event Status Enable)
Command *ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.

<mask> An integer, 0 to 255, representing a mask value for the bits to be enabled in the Stan-
dard Event Status Register as shown in Table 3-2 on page 3-4.

Example This example enables the User Request (URQ) bit of the Standard Event Status Enable
Register. When this bit is enabled and a front-panel key is pressed, the Event Summary
bit (ESB) in the Status Byte Register is also set.

10 OUTPUT 707;"*ESE 64"
20 END

Query *ESE?
The *ESE? query returns the current contents of the Standard Event Status Enable
Register.

Returned Format <mask><NL>
<mask> An integer, +0 to +255 (the plus sign is also returned), representing a mask value for

the bits enabled in the Standard Event Status Register as shown in Table 3-2 on
page 3-4.

Example This example places the current contents of the Standard Event Status Enable Regis-
ter in the numeric variable, Event. The value of the variable is printed on the com-
puter's screen.

10 OUTPUT 707;"*ESE?"
20 ENTER 707;Event
30 PRINT Event
40 END

3-4

Common Commands
*ESR? (Event Status Register)

The Standard Event Status Enable Register contains a mask value for the bits to be
enabled in the Standard Event Status Register. A "1" in the Standard Event Status
Enable Register enables the corresponding bit in the Standard Event Status Register. A
"0" in the enable register disables the corresponding bit.

See Also Refer to “Status Reporting” on page 1-20 for a complete discussion of status.

*ESR? (Event Status Register)
Query *ESR?

The *ESR? query returns the contents of the Standard Event Status Register. Reading
this register clears the Standard Event Status Register, as does *CLS.

Returned Format <status><NL>
<status> An integer, 0 to 255, representing the total bit weights of all bits that are high at the

time you read the register.

Example This example places the current contents of the Standard Event Status Register in the
numeric variable, Event, then prints the value of the variable to the computer's screen.

10 OUTPUT 707;"*ESR?"
20 ENTER 707;Event
30 PRINT Event
40 END
Table 3-3 lists each bit in the Event Status Register and the corresponding bit weights.

Table 3-2. Standard Event Status Enable Register Bits

Bit Weight Enables Definition

7 128 PON - Power On Indicates power is turned on.
6 64 URQ - User Request Not used. Permanently set to zero.
5 32 CME - Command Error Indicates whether the parser detected an

error.
4 16 EXE - Execution Error Indicates whether a parameter was out-of-

range, or was inconsistent with the current
settings.

3 8 DDE - Device Dependent Error Indicates whether the device was unable to
complete an operation for device-
dependent reasons.

2 4 QYE - Query Error Indicates if the protocol for queries has
been violated.

1 2 RQC - Request Control Indicates whether the device is requesting
control.

0 1 OPC - Operation Complete Indicates whether the device has
completed all pending operations.

3-5

Common Commands
*IDN? (Identification Number)

*IDN? (Identification Number)
Query *IDN?

The *IDN? query returns the company name, analyzer model number, serial number,
and software version by returning the following string:

AGILENT TECHNOLOGIES,86100A,<USXXXXXXXX>,<Rev #>
<USXXXXXXXX> Specifies the serial number of the analyzer. The first two letters and digits of the serial

prefix are the country of manufacture for the analyzer. The last five digits are the serial
suffix, which is assigned sequentially, and is different for each analyzer.

<Rev #> Specifies the software version of the analyzer, and is the revision number.

Returned Format AGILENT TECHNOLOGIES,86100A,USXXXXXXXX,A.XX.XX<NL>
Example This example places the analyzer's identification information in the string variable,

Identify$, then prints the identification information to the computer screen.

10 DIM Identify$[50] !Dimension variable
20 OUTPUT 707;"*IDN?"
30 ENTER 707;Identify$
40 PRINT Identify$
50 END

Table 3-3. Standard Event Status Register Bits

Bit Bit Weight Bit Name Condition

7 128 PON 1 = OFF to ON transition has occurred.
6 64 Not Used. Permanently set to zero.
5 32 CME 0 = no command errors.

1 = a command error has been detected.
4 16 EXE 0 = no execution error.

1 = an execution error has been detected.
3 8 DDE 0 = no device-dependent errors.

1 = a device-dependent error has been detected.
2 4 QYE 0 = no query errors.

1 = a query error has been detected.
1 2 RQC 0 = request control - NOT used - always 0.
0 1 OPC 0 = operation is not complete.

1 = operation is complete.

0 = False = Low 1 = True = High

3-6

Common Commands
*LRN? (Learn)

*LRN? (Learn)
Query *LRN?

The *LRN? query returns a string that contains the analyzer's current setup. The ana-
lyzer's setup can be stored and sent back to the analyzer at a later time. This setup
string should be sent to the analyzer just as it is. It works because of its embedded
":SYStem:SETup" header.

Returned Format :SYSTem:SETup <setup><NL>
<setup> This is a definite length arbitrary block response specifying the current analyzer setup.

The block size is subject to change with different firmware revisions.

Example This example sets the scope’s address and asks for the learn string, then determines
the string length according to the IEEE 488.2 block specification. It then reads the
string and the last EOF character.

10 ! Set up the scope’s address and
20 ! ask for the learn string...
30 ASSIGN @Scope TO 707
40 OUTPUT @Scope:"*LRN?"
50 !
60 ! Search for the # sign.
70 !
80 Find_pound_sign: !
90 ENTER @Scope USING "#,A";Thischar$
100 IF Thischar$<>"#" THEN Find_pound_sign
110 !
120 ! Determine the string length according
130 ! to the IEEE 488.2 # block spec.
140 ! Read the string then the last EOF char.
150 !
160 ENTER @Scope USING "#,D";Digit_count
170 ENTER @Scope USING "#,"&VAL$(Digit_count)&"D";Stringlength
180 ALLOCATE Learn_string$[Stringlength+1]
190 ENTER @Scope USING "-K";Learn_string$
200 OUTPUT 707;":syst:err?"
210 ENTER 707;Errornum
220 PRINT "Error Status=";Errornum

See Also SYSTem:SETup command and query. When HEADers and LONGform are ON, the SYS-
Tem:SETup command performs the same function as the *LRN query. Otherwise,
*LRN and SETup are not interchangeable.

*LRN? Returns Prefix to Setup Block

The *LRN query always returns :SYSTem:SETup as a prefix to the setup block. The SYSTem:HEADer
command has no effect on this response.

3-7

Common Commands
*OPC (Operation Complete)

*OPC (Operation Complete)
Command *OPC

The *OPC command sets the operation complete bit in the Standard Event Status Reg-
ister when all pending device operations have finished.

Example This example sets the operation complete bit in the Standard Event Status Register
when the PRINT operation is complete.

10 OUTPUT 707;":PRINT;*OPC"
20 END

Query *OPC?
The *OPC? query places an ASCII character “1” in the analyzer's output queue when all
pending selected device operations have finished.

Returned Format 1<NL>
Example This example places an ASCII character “1” in the analyzer's output queue when the

SINGle operation is complete. Then the value in the output queue is placed in the
numeric variable “Complete.”

10 OUTPUT 707;":SINGle;*OPC?"
20 ENTER 707;Complete

Note

Three commands are available for the synchronization between remote command scripts and the
instrument:

• The *OPC command: This command sets a bit in the Standard Event Status Register when all
pending device operations have finished. It is useful to verify the completion of commands that
could take a variable amount of time or commands executed in parallel with other commands,
such as PRINt, and the limit test commands (ACQuire:RUNtil, MTEST:RUNtil, and LTEST). It does
not stop the execution of the remote script.

• The *OPC query: This query allows synchronization between the computer and the instrument
by using the message available (MAV) bit in the Status Byte, or by reading the output queue.
Unlike the *OPC command, the *OPC query does not affect the OPC event bit in the Standard
Event Status Register. The execution of the remote script is halted and therefore the *OPC query
should be used judiciously. For example, the command “:MTEST:RUNtil FSAMPLES,100’;
*OPC?” will lock the remote interface until 100 failed samples are detected, which could take
a very long time. Under these circumstances, the user must send a device clear or power down
to re-start the instrument.

• The *WAI command: This command is similar to the *OPC? query as it will also block the exe-
cution of the remote script until all pending operations are finished. It is particularly useful if
the host computer is connected to two or more instruments. This command will not block the
GPIB bus, allowing the computer to continue issuing commands to the instrument not executing
the *WAI command.

3-8

Common Commands
*OPT? (Option)

30 PRINT Complete
40 END
The *OPC query allows synchronization between the computer and the analyzer by
using the message available (MAV) bit in the Status Byte, or by reading the output
queue. Unlike the *OPC command, the *OPC query does not affect the OPC Event bit
in the Standard Event Status Register.

*OPT? (Option)
Query *OPT?

The OPT? query returns a string with a list of installed options. The query returns a 1
as the first character if option 001 (divided trigger - 12 GHz) is installed. If no options
are installed, the string will have a 0 as the first character.

The length of the returned string may increase as options become available in the
future. Once implemented, an option name will be appended to the end of the returned
string, delimited by a comma.

Example This example places all options into the string variable, Options$, then prints the
option model and serial numbers to the computer's screen.

10 DIM Options$[100]
20 OUTPUT 707;"*OPT?"
30 ENTER 707;Options$
40 PRINT Options$
50 END

*RCL (Recall)
Command *RCL <register>

The *RCL command restores the state of the analyzer to a setup previously stored in
the specified save/recall register. An analyzer setup must have been stored previously
in the specified register. Registers 0 through 9 are general-purpose registers and can be
used by the *RCL command.

<register> An integer, 0 through 9, specifying the save/recall register that contains the analyzer
setup you want to recall.

Example This example restores the analyzer to the analyzer setup stored in
register 3.

10 OUTPUT 707;"*RCL 3"

Note

If instrument conditions have been set that can not be met, and the *OPC? is sent out, the instru-
ment will not continue remote execution. Under these circumstances, the user must send a device
clear or power down to restart the instrument.

3-9

Common Commands
*RST (Reset)

20 END
See Also SAVe. An error message appears on the analyzer display if nothing has been previously

saved in the specified register.

*RST (Reset)
Command *RST

The *RST command places the analyzer in a known state. Table 3-4 lists the reset con-
ditions as they relate to the analyzer commands. This is the same as using the front-
panel default setup button.

Example This example resets the analyzer to a known state.

10 OUTPUT 707;"*RST"
20 END

This following table shows the analyzer’s default setup.

Table 3-4. Default Setup (1 of 5)

Acquisition

Run/Stop 100 ms

Grid on

30

Enabled

8 hours

Default legend

Off

Off (until the first marker is placed on
the screen)

User selectable if more than one
source is available.

28 ns

0V
Points/Waveform (Record length) Automatic - 1350 points
Averaging Off
of Averages 16

Trigger

Source Front Panel
Bandwidth 2.5 GHz

3-10

Common Commands
*RST (Reset)

Hysteresis Normal
Slope Positive
Gated Trigger Off
Level 0 V
Time Base
Units Time
Scale 1 ns/div
Position 24 ns
Reference Left

Display

Persistence Variable (oscilloscope mode)

Gray Scale (Infinite) (Eye/Mask mode)
Persistence Time 100 ms
Graticule Grid on
Intensity 30
Backlight Saver Enabled
Turn off backlight after 8 hours
Colors Default legend
Labels Off

Markers

Mode
Readout Off (until the first marker is placed on

the screen)
X1, Y1 source User selectable if more than one

source is available
X1 position 28 ns
Y1 position 0V
X2, Y2 source User selectable if more than one

source is available
X2 position 24 ns
Y2 position 0V

Measure Oscilloscope mode Eye/Mask mode

QuickMeas, Meas.1 V p-p Extinction ratio
QuickMeas, Meas. 2 Period Jitter
QuickMeas, Meas. 3 Frequency Average power
QuickMeas, Meas. 4 Rise time Crossing %
Start mask test — Off

Table 3-4. Default Setup (2 of 5)

3-11

Common Commands
*RST (Reset)

Define Measure

Thresholds - percent 10%, 50%, 90%
Thresholds - volts 0.0, 1.6, 5.0
Top-Base Definition Standard
Statistics Off
Top-Base volts 0.0, 5.0
Measurements Off
Start Edge Rising, 1 level, middle
Stop Edge Falling, 1 level, middle
Eye Window 1 40%
Eye Window 2 60%
Duty cycle distortion format Time
Extinction ratio format Decibel
Eye width Time
Jitter RMS
Average power Watts

Waveform

Memory display Off
Waveform source First available channel or memory 1
Memory type Waveform
Math
Function Function 1
Function state Off
Operator Magnify
Operand 1 First available channel or memory 1
Operand 2 First available channel or memory 1
Horizontal scaling Track source
Vertical scaling Track source

Channel

Display On (lowest number installed channel;
others are off)

Scale 50 µW/div or 10 mV/div
Offset 0.0 V or 0 W
Units Volts (or watts)
Filter Dependent on module
Wavelength Wavelength 1
Bandwidth Dependent on module

Table 3-4. Default Setup (3 of 5)

3-12

Common Commands
*RST (Reset)

Histogram

Mode Off
Axis Horizontal
Window source First available channel
Size Horizontal - 4.0 divisions

Vertical - 5.0 divisions
X1 position 25 ns
Y1 position 1 division up from bottom, value

depends on module
X2 position 33 ns
Y2 position 1 division down from top, value

depends on module

Utilities

Cal Output 5.0 mv
Calibration Details Off
Self Test Scope Self Tests
Service Extensions Off
Remote Interface Unchanged
Dialog Preferences Opaque Dialogs
Allow Multiple Active Dialogs Off
Sound enabled, volume 48
Limit Test
Test Off
Measurement None
Fail when Outside
Upper limit 10
Lower limit -10
Run until Forever
Run until failures 1 failure
Run until waveforms 1,000,000 waveforms
Store summary Off
Store screen Off
Store waveforms Off

Mask Test

Test Off
Scale source Displayed channel
X1 position 2 divisions from left, 26 ns

Table 3-4. Default Setup (4 of 5)

3-13

Common Commands
*SAV (Save)

*SAV (Save)
Command *SAV <register>

The *SAV command stores the current state of the analyzer in a save register.

<register> An integer, 0 through 9, specifying which register to save the current analyzer setup.

Example This example stores the current analyzer setup to register 3.

10 OUTPUT 707;"*SAV 3"
20 END

See Also *RCL (Recall)

*SRE (Service Request Enable)
Command *SRE <mask>

The *SRE command sets the Service Request Enable Register bits. By setting the
*SRE, when the event happens, you have enabled the analyzer’s interrupt capability.
The scope will then do an SRQ (service request), which is an interrupt.

<mask> An integer, 0 to 255, representing a mask value for the bits to be enabled in the Service
Request Enable Register as shown in Table 3-5 on page 3-14.

Example This example enables a service request to be generated when a message is available in
the output queue. When a message is available, the MAV bit is high.

10 OUTPUT 707;"*SRE 16"
20 END

Query *SRE?
The *SRE? query returns the current contents of the Service Request Enable Register.

Returned Format <mask><NL>

1 level 2 divisions down
0 level 2 divisions up
Mask margins Off
Run until Forever
Failed waveforms 1 failure
Failed samples 1 sample
Waveforms 1,000,000
Samples 1,000,000
Store waveforms Off
Store summary Off
Store screen Off

Table 3-4. Default Setup (5 of 5)

3-14

Common Commands
*STB? (Status Byte)

<mask> An integer, 0 to 255, representing a mask value for the bits enabled in the Service
Request Enable Register.

Example This example places the current contents of the Service Request Enable Register in the
numeric variable, Value, then prints the value of the variable to the computer's screen.

10 OUTPUT 707;"*SRE?"
20 ENTER 707;Value
30 PRINT Value
40 END
The Service Request Enable Register contains a mask value for the bits to be enabled
in the Status Byte Register. A “1” in the Service Request Enable Register enables the
corresponding bit in the Status Byte Register. A “0” disables the bit.

*STB? (Status Byte)
Query *STB?

The *STB? query returns the current contents of the Status Byte, including the Master
Summary Status (MSS) bit. See Table 3-6 on page 3-15 for Status Byte Register bit def-
initions.

Returned Format <value><NL>
<value> An integer, from 0 to 255.

Example This example reads the contents of the Status Byte into the numeric variable, Value,
then prints the value of the variable to the computer's screen.

10 OUTPUT 707;"*STB?"
20 ENTER 707;Value
30 PRINT Value
40 END

Table 3-5. Service Request Enable Register Bits

Bit Weight Enables

7 128 OPER - Operation Status Register
6 64 Not Used
5 32 ESB - Event Status Bit
4 16 MAV - Message Available
3 8 Not Used
2 4 MSG - Message
1 2 USR - User Event Register
0 1 TRG - Trigger

3-15

Common Commands
*TRG (Trigger)

In response to a serial poll (SPOLL), Request Service (RQS) is reported on
bit 6 of the status byte. Otherwise, the Master Summary Status bit (MSS) is reported
on bit 6. MSS is the inclusive OR of the bitwise combination, excluding bit 6, of the Sta-
tus Byte Register and the Service Request Enable Register. The MSS message indicates
that the scope is requesting service (SRQ).

*TRG (Trigger)
Command *TRG

The *TRG command has the same effect as the Group Execute Trigger message (GET)
or RUN command. It acquires data for the active waveform display, if the trigger condi-
tions are met, according to the current settings.

Example This example starts the data acquisition for the active waveform display according to
the current settings.

10 OUTPUT 707;"*TRG"
20 END

Table 3-6. Status Byte Register Bits

Bit Bit Weight Bit Name Condition

7 128 OPER 0 = no enabled operation status conditions have occurred
1 = an enabled operation status condition has occurred

6 64 RQS/MSS 0 = analyzer has no reason for service
1 = analyzer is requesting service

5 32 ESB 0 = no event status conditions have occurred
1 = an enabled event status condition occurred

4 16 MAV 0 = no output messages are ready
1 = an output message is ready

3 8 — 0 = not used
2 4 MSG 0 = no message has been displayed

1 = message has been displayed
1 2 USR 0 = no enabled user event conditions have occurred

1 = an enabled user event condition has occurred

0 1 TRG 0 = no trigger has occurred
1 = a trigger occurred

0 = False = Low 1 = True = High

3-16

Common Commands
*TST? (Test)

*TST? (Test)
Query *TST?

The *TST? query causes the analyzer to perform a self-test, and places a response in
the output queue indicating whether or not the self-test completed without any
detected errors. Use the :SYSTem:ERRor command to check for errors. A zero indi-
cates that the test passed and a non-zero indicates the self-test failed.

Returned Format <result><NL>
<result> 0 for pass; non-zero for fail.

Example This example performs a self-test on the analyzer and places the results in the numeric
variable, Results. The program then prints the results to the computer's screen.

10 OUTPUT 707;"*TST?"
20 ENTER 707;Results
30 PRINT Results
40 END
If a test fails, refer to the troubleshooting section of the service guide.

The Self-Test takes approximately 3 minutes to complete. When using timeouts in your
program, 200 seconds duration is recommended.

*WAI (Wait-to-Continue)
Command *WAI

The *WAI command prevents the analyzer from executing any further commands or
queries until all currently executing commands are completed. See *OPC for alternate
methods for synchronization.

Disconnect Inputs First

You must disconnect all front-panel inputs before sending the *TST? query.

3-17

Common Commands
*WAI (Wait-to-Continue)

Example This example executes a single acquisition, and causes the instrument to wait until
acquisition is complete before executing any additional commands.

10 OUTPUT 707;"SINGle;*WAI"
20 END

Note

Three commands are available for the synchronization between remote command scripts and the
instrument:

• The *OPC command: This command sets a bit in the Standard Event Status Register when all
pending device operations have finished. It is useful to verify the completion of commands that
could take a variable amount of time or commands executed in parallel with other commands,
such as PRINt, and the limit test commands (ACQuire:RUNtil, MTEST:RUNtil, and LTEST). It does
not stop the execution of the remote script.

• The *OPC query: This query allows synchronization between the computer and the instrument
by using the message available (MAV) bit in the Status Byte, or by reading the output queue.
Unlike the *OPC command, the *OPC query does not affect the OPC event bit in the Standard
Event Status Register. The execution of the remote script is halted and therefore the *OPC query
should be used judiciously. For example, the command “:MTEST:RUNtil FSAMPLES,100’;
*OPC?” will lock the remote interface until 100 failed samples are detected, which could take
a very long time. Under these circumstances, the user must send a device clear or power down
to re-start the instrument.

The *WAI command: This command is similar to the *OPC? query as it will also block the execu-
tion of the remote script until all pending operations are finished. It is particularly useful if the host
computer is connected to two or more instruments. This command will not block the GPIB bus,
allowing the computer to continue issuing commands to the instrument not executing the *WAI
command.

3-18

Common Commands
*WAI (Wait-to-Continue)

4

AEEN (Acquisition Limits Event Enable register) 4-2
ALER? (Acquisition Limits Event Register) 4-3
AUToscale 4-3
BLANk 4-4
CDISplay 4-4
COMMents 4-5
CREE (Clock Recovery Event Enable Register) 4-5
CRER? (Clock Recovery Event Register) 4-6
DIGitize 4-6
JEE (Jitter Event Enable Register) 4-8
JER? (Jitter Event Register) 4-8
LER? (Local Event Register) 4-9
LTEE (Limit Test Event Enable register) 4-9
LTER? (Limit Test Event Register) 4-10
MODel? 4-10
MTEE (Mask Test Event Enable Register) 4-10
MTER? (Mask Test Event Register) 4-11
OPEE 4-11
OPER? 4-12
PRINt 4-12
RECall:SETup 4-12
RUN 4-12
SERial (Serial Number) 4-13
SINGle 4-13
STOP 4-14
STORe:SETup 4-14
STORe:WAVeform 4-14
TER? (Trigger Event Register) 4-15
UEE (User Event Enable register) 4-15
UER? (User Event Register) 4-16
VIEW 4-16

Root Level Commands

4-2

Root Level Commands
AEEN (Acquisition Limits Event Enable register)

Root Level Commands

Root level commands control many of the basic operations of the analyzer that can be
selected by pressing the labeled keys on the front panel. These commands are always
recognized by the parser if they are prefixed with a colon, regardless of the current
tree position. After executing a root level command, the parser is positioned at the root
of the command tree.

Status Reporting

Data Structures

For any of the Standard Event Status Register bits to generate a summary bit, the bits
must be enabled. These bits are enabled by using the *ESE common command to set
the corresponding bit in the Standard Event Status Enable Register. URQ in the Event
Status Register always returns 0. To generate a service request (SRQ) interrupt to an
external computer, at least one bit in the Status Byte Register must be enabled. These
bits are enabled by using the *SRE common command to set the corresponding bit in
the Service Request Enable Register. These enabled bits can then set RQS and MSS
(bit 6) in the Status Byte Register. In the SRE query, bit 6 always returns 0. Various
root level commands documented in this chapter query and set various registers within
the register set.

Root Level Commands

AEEN (Acquisition Limits Event Enable register)
Command :AEEN <mask>

This command sets a mask into the Acquisition Limits Event Enable register. A “1” in a
bit position enables the corresponding bit in the Acquisition Limits Event Register to
set bit 9 in the Operation Status Register.

<mask> The decimal weight of the enabled bits.

Query :AEEN?
The query returns the current decimal value in the Acquisition Limits Event Enable
register.

Returned Format [:AEEN] <mask><NL>

4-3

Root Level Commands
ALER? (Acquisition Limits Event Register)

ALER? (Acquisition Limits Event Register)
Query :ALER?

This query returns the current value of the Acquisition Limits Event Register as a deci-
mal number and also clears this register.

Bit 0 (COMP) of the Acquisition Limits Event Register is set when the acquisition com-
pletes. The acquisition completion criteria are set by the :ACQuire:RUNTil command.

Returned Format [:ALER] <value><NL>

AUToscale
Command :AUToscale

This command causes the analyzer to evaluate the current input signal and find the
optimum conditions for displaying the signal. It adjusts the vertical gain and offset for
the channel, and sets the time base on the lowest numbered input channel that has a
signal.

If signals cannot be found on any vertical input, the analyzer is returned to its former
state.

Autoscale sets the following:

• Channel Display, Scale, and Offset
• Trigger and Level
• Time Base Scale and Position

Autoscale turns off the following:

• Measurements on sources that are turned off
• Functions
• Windows
• Memories

Acquistion Limit Tests on Individual Channels

When in independent acquisition mode and a channel finishes the corresponding bit of the acqui-
sition limit event register (ALER) is set. For example, when channel 1 limit is reached bit 1 of the
ALER is set; when channel 2 limit is reached bit 2 of the ALER is set. Bit 0 of the ALER is not set
until all channels that acquisition limit tests are being performed on have finished. If the acquisi-
tion limit of a channel is set to off then the corresponding bit of the ALER for that channel is not
set during the acquisition limit test. ALER? will return the decimal weight of the enabled bits of
the ALER. For example, if channels 1and 2 have reached their acquisition limit and no other chan-
nels have acquisition limits specified, then the value returned by the ALER? will be 7 (111 in
binary). Bits 0, 1, & 2 of the ALER will then be set.

4-4

Root Level Commands
BLANk

No other controls are affected by Autoscale.

Example This example automatically scales the analyzer for the input signal.

10 OUTPUT 707;":AUTOSCALE"
20 END

Query :AUToscale?
Returns a string explaining the results of the last autoscale. The string is empty if the
last autoscale completed successfully. The returned string stays the same until the
next autoscale is executed.

The following are examples of strings returned by the AUToscale? query.

No channels turned on
Left module requires calibration for autoscale
Right module requires calibration for autoscale
Channel n signal is too small
Channel n signal is too high
Channel n signal exceeds the measurable range at the top
Channel n offset exceeds the measurable range at the bottom
No trigger or trigger too slow
Trigger is in Free Run
Unable to set horizontal scale/delay for channel n

Returned Format [:AUToscale] <string>

BLANk
Command :BLANk {CHANnel<N> | FUNCtion<N> | WMEMory<N> | JDMemory | RESPonse<N> | HISTogram |

CGMemory}
This command turns off an active channel, function, waveform memory, jitter data
memory, TDR response, histogram, or color grade memory. The VIEW command turns
them on.

<N> An integer, 1 through 4.

Firmware Revision Re-
quired

4.00 and above (86100C instruments) for jitter data memory argument.

Example This example turns off channel 1.

10 OUTPUT 707;":BLANK CHANNEL1"
20 END

CDISplay
Command :CDISplay [CHANnel<N>]

4-5

Root Level Commands
COMMents

This command clears the display and resets all associated measurements. If the ana-
lyzer is stopped, all currently displayed data is erased. If the analyzer is running, all of
the data in active channels and functions is erased; however, new data is displayed on
the next acquisition. Waveform memories are not erased. If a channel is specified as a
parameter, only the displayed data from that channel is cleared.

<N> An integer, 1 through 4.

Example This example clears the analyzer display.

10 OUTPUT 707;":CDISPLAY"
20 END

COMMents
Command :COMMents {LMODule | RMODule},"<comments_text>"

This command sets the comments field for the module. This field is used to describe
options included in the module, or for user comments about the module. A maximum
of 35 characters is allowed.

<comments_text> Represents the ASCII string enclosed in quotation marks. The maximum length of the
string is 35 characters.

Example 10 OUTPUT 707;”:COMMENTS LMODULE”
20 END

Query :COMMents? {LMODule | RMODule}
The query returns a string with the comments field associated with the module.

Returned Format [:COMMents] <string>

CREE (Clock Recovery Event Enable Register)
Command :CREE <mask>

This command sets a mask into the Clock Recovery Event Enable Register.

A “1” in a bit position enables the corresponding bit in the Clock Recovery Event Regis-
ter to set bit 7 in the Operation Status Register.

<mask> The decimal weight of the enabled bits. Some of the useful mask values are shown
below.

Enable Mask Value

Block all bits 0
Enable UNLK, block all others 1
Enable LOCK, block all others 2
Enable NSPR1, block all others 4
Enable SPR1, block all others 8

4-6

Root Level Commands
CRER? (Clock Recovery Event Register)

Query :CREE?
The query returns the current decimal value in the Clock Recovery Event Enable Reg-
ister.

Returned Format [:CREE] <mask><NL>

CRER? (Clock Recovery Event Register)
Query :CRER?

This query returns the current value of the Clock Recovery Event Register as a decimal
number and also clears this register. Refer to “SPResent?” on page 9-5 for more
detailed information on receiver one and receiver two.

Bit 0 (UNLK) of the Clock Recovery Event Register is set when an 83491/2/3/4/5A
Clock Recovery module becomes unlocked or trigger loss has occurred.

Bit 1 (LOCK) of the Clock Recovery Event Register is set when an 83491/2/3/4/5A
Clock Recovery module becomes locked or a trigger capture has occurred.

Bit 2 (NSPR1) of the Clock Recovery Event Register is set when an 83491/2/3/4A Clock
Recovery module transitions to no longer detecting an optical signal on receiver one.
An 83495A module does not affect this bit.

Bit 3 (SPR1) of the Clock Recovery Event Register is set when an 83491/2/3/4A Clock
Recovery module transitions to detecting an optical signal on receiver one. An 83495A
module does not affect this bit.

Bit 4 (NSPR2) of the Clock Recovery Event Register is set when an 83491/2/3/4A Clock
Recovery module transitions to no longer detecting an optical signal on receiver two.
An 83495A module does not affect this bit.

Bit 5 (SPR2) of the Clock Recovery Event Register is set when an 83491/2/3/4A Clock
Recovery module transitions to detecting an optical signal on receiver two. An 83495A
module does not affect this bit.

Returned Format [:CRER] <value><NL>

DIGitize
Command :DIGitize [CHANnel<N> | FUNCtion<N> | RESPonse<N>]

This command invokes a special mode of data acquisition that is more efficient than
using the RUN command when using averaging in the Oscilloscope mode. With the
faster computations of the Agilent 86100B, the DIGitize command is no longer signifi-
cantly faster than the RUN and RUNTil commands.

Enable NSPR2, block all others 16
Enable SPR2, block all others 32

Enable Mask Value

4-7

Root Level Commands
DIGitize

In Jitter mode, the DIGitize command does not use any arguments, and the desired
channel or function must be set up before this command is sent.

The DIGitize command initializes the selected channels or functions, then it acquires
them according to the current analyzer settings. When the signal is completely
acquired (for example, when the specified number of averages have been taken), the
analyzer is stopped.

In any instrument mode except Jitter mode, if you use the DIGitize command with
channel, function, or response parameters, only the specified channels, functions, or
responses are acquired. In Jitter mode, do not append any arguments to this command.
To speed up acquisition, the waveforms are not displayed and their display state indi-
cates “off.” Subsequent to the digitize operation, the display of the acquired waveforms
may be turned on for viewing, if desired. Other sources are turned off and their data is
invalidated.

If you use the DIGitize command with no parameters, the digitize operation is per-
formed on the channels or functions that were acquired with a previous digitize, run, or
single operation. In this case, the display state of the acquired waveforms is not
changed. Because the command executes more quickly without parameters, this form
of the command is useful for repetitive measurement sequences. You can also use this
mode if you want to view the digitize results because the display state of the digitized
waveforms is not affected.

Data acquired with the DIGitize command is placed in the normal channel, function, or
response.

See Chapter 2, “Sample Programs” for examples of how to use DIGitize and its related
commands.

Full Range of Measurement and Math Operators are Available

Even though digitized waveforms are not displayed, the full range of measurement and math opera-
tors may be performed on them.

DIGitize Command and the Stop Condition

The DIGitize command is not intended for use with limit tests. Use the RUN and RUNTil commands
instead. The stop condition for the RUN command is specified by commands ACQuire:RUNTil on
page 6-6, MTEST:RUNTil on page 17-10, or LTEST on page 15-5.

DIGitize Command for Differential or Common Mode

Before executing the DIGitize command for a differential or common mode response, the type of
response must be specified by turning on the response. This is done using the
:TDR{2|4}:RESPonse<N> command. Refer to “RESPonse” on page 19-4.

4-8

Root Level Commands
JEE (Jitter Event Enable Register)

<N> An integer, 1 through 4.

Example This example acquires data on channel 1 and function 2.

10 OUTPUT 707;":DIGITIZE CHANNEL1,FUNCTION2"
20 END
The ACQuire subsystem commands set up conditions such as TYPE and COUNT for
the next DIGitize command.

The WAVeform subsystem commands determine how the data is transferred out of the
analyzer, and how to interpret the data.

JEE (Jitter Event Enable Register)
Command :JEE <mask>

This command sets a mask into the Jitter Event Enable register.

A “1” in a bit position enables the corresponding bit in the Jitter Event Register. This
action sets bit 12 (JIT) in the Operation Status Register, which potentially can cause an
SRQ to be generated.

<mask> The decimal value of the enabled bits. Only bits 0 and 1, of the Mask Test Event Regis-
ter, are used at this time.

Query :JEE?
The query returns the current decimal value in the Jitter Event Enable Register.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:JEE] <mask><NL>

JER? (Jitter Event Register)
Query :JER?

This query returns the current value of the Jitter Event Register as a decimal number
and also clears the register. Bit 0 of the register is set when characterizing edges in Jit-
ter Mode fails. Bit 1 of the register is set when pattern synchronization is lost in Jitter
Mode. Bit 2 of the register is set when a parameter change in Jitter Mode has made
autoscale necessary.

Bit 12 of the Operation Status Register (JIT) indicates that one of the enabled condi-
tions in the Jitter Event Register has occurred.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:JER] <value><NL>

4-9

Root Level Commands
LER? (Local Event Register)

LER? (Local Event Register)
Query :LER?

This query reads the Local (LCL) Event Register. A “1” is returned if a remote-to-local
transition has taken place due to the front-panel Local key being pressed. A “0” is
returned if a remote-to-local transition has not taken place.

Returned Format [:LER] {1 | 0}<NL>
Example The following example checks to see if a remote-to-local transition has taken place and

places the result in the string variable, Answer$, and then prints the result to the con-
troller’s screen.

10 Dim Answer$[50] !Dimension variable
20 OUTPUT 707;":LER?"
30 ENTER 707; Answer$
40 PRINT Answer$
50 END
After the LCL Event Register is read, it is cleared.

Once this bit is set, it can only be cleared by reading the Status Byte, reading the regis-
ter with the LER? query, or sending a *CLS common command.

LTEE (Limit Test Event Enable register)
Command :LTEE <mask>

This command sets a mask into the Limit Test Event Enable register.

A “1” in a bit position enables the corresponding bit in the Limit Event Register to set
bit 8 in the Operation Status Register.

<mask> The decimal weight of the enabled bits. Only bits 0 and 1, of the Limit Test Event Reg-
ister, are used at this time. The useful mask values are shown in the following table.

Query :LTEE?
The query returns the current decimal value in the Limit Test Event Enable Register.

Returned Format [:LTEE] <mask><NL>

Enable Mask Value

Block COMP and FAIL 0
Enable COMP, block FAIL 1
Enable FAIL, block COMP 2
Enable COMP and FAIL 3

4-10

Root Level Commands
LTER? (Limit Test Event Register)

LTER? (Limit Test Event Register)
Query :LTER?

This query returns the current value of the Limit Test Event Register as a decimal
number and also clears this register.

Bit 0 (COMP) of the Limit Test Event Register is set when the Limit Test completes.
The Limit Test completion criteria are set by the LTESt:RUN command.

Bit 1 (FAIL) of the Limit Test Event Register is set when the Limit Test fails. Failure
criteria for the Limit Test are defined by the LTESt:FAIL command.

Returned Format [:LTER] <value><NL>

MODel?
Query :MODel? {FRAMe | LMODule | RMODule}

This query returns the Agilent model number for the analyzer frame or module.

Returned Format [:MODel] <string>
<string> A six-character alphanumeric model number in quotation marks. Output is determined

by header and longform status as in Table 4-1.

Example This example places the model number of the frame in a string variable, Model$, then
prints the contents of the variable on the computer's screen.

10 Dim Model$[13] !Dimension variable
20 OUTPUT 707;":Model? FRAME"
30 ENTER 707; Model$
40 PRINT Model$
50 END

MTEE (Mask Test Event Enable Register)
Command :MTEE <mask>

This command sets a mask into the Mask Event Enable register.

Table 4-1. Model? Returned Format

HEADER LONGFORM RESPONSE

ON OFF ON OFF
X X 86100A
X X 86100A

X X :MOD 86100A
X X :MODEL 86100A

4-11

Root Level Commands
MTER? (Mask Test Event Register)

A “1” in a bit position enables the corresponding bit in the Mask Test Event Register to
set bit 10 in the Operation Status Register.

<mask> The decimal weight of the enabled bits. Only bits 0 and 1, of the Mask Test Event Reg-
ister, are used at this time. The useful mask values are shown in the following table.

Query :MTEE?
The query returns the current decimal value in the Mask Event Enable Register.

Returned Format [:MTEE] <mask><NL>

MTER? (Mask Test Event Register)
Query :MTER?

This query returns the current value of the Mask Test Event Register as a decimal num-
ber and also clears this register.

Bit 0 (COMP) of the Mask Test Event Register is set when the Mask Test completes.

Bit 1 (FAIL) of the Mask Test Event Register is set when the Mask Test fails. This will
occur whenever any sample is recorded within any region defined in the mask.

Returned Format [:MTER] <value><NL>

OPEE
Command :OPEE <mask>

This command sets a mask in the Operation Status Enable register. Each bit that is set
to a “1” enables that bit to set bit 7 in the Status Byte Register, and potentially causes
an SRQ to be generated. Bit 5, Wait for Trig, is used. Other bits are reserved.

<mask> The decimal weight of the enabled bits.

Query :OPEE?
The query returns the current value contained in the Operation Status Enable register
as a decimal number.

Returned Format [:OPEE] <value><NL>

Enable Mask Value

Block COMP and FAIL 0
Enable COMP, block FAIL 1
Enable FAIL, block COMP 2
Enable COMP and FAIL 3

4-12

Root Level Commands
OPER?

OPER?
Query :OPER?

This query returns the value contained in the Operation Status Register as a decimal
number and also clears this register. This register is the summary of the CLCK bit (bit
7), LTEST bit (bit 8), ACQ bit (bit 9) and MTEST bit (bit 10).

The CLCK bit is set by the Clock Recovery Event Register and indicates that a clock
event has occurred. The LTEST bit is set by the Limit Test Event Register and indi-
cates that a limit test has failed or completed. The ACQ bit is set by the Acquisition
Event Register and indicates that an acquisition limit test has completed. The MTEST
bit is set by the Mask Test Event Register and indicates that a mask limit test has failed
or completed.

Returned Format [:OPER] <value><NL>

PRINt
Command :PRINt

This command outputs a copy of the screen to a printer or other device destination
specified in the HARDcopy subsystem. You can specify the selection of the output and
the printer using the HARDcopy subsystem commands.

Example This example outputs a copy of the screen to a printer or a disk file. See *OPC (Opera-
tion Complete) command on page 3-7 for synchronization of PRINT operations.

10 OUTPUT 707;”:PRINT”
20 END

RECall:SETup
Command :RECall:SETup <setup_memory_num>

This command recalls a setup that was saved in one of the analyzer’s setup memories.
You can save setups using either the STORe:SETup command or the front panel.

<setup_memory_num> Setup memory number, an integer, 0 through 9.

Example This command recalls a setup from setup memory 2.

10 OUTPUT 707;":RECall:SETup 2"
20 END

RUN
Command :RUN [CHANnel<N>]

4-13

Root Level Commands
SERial (Serial Number)

This command starts the analyzer running. When the analyzer is running, it acquires
waveform data according to its current settings. Acquisition runs repetitively until the
analyzer receives a correspondent STOP command.

<N> An integer, 1 through 4.

Example This example causes the analyzer to acquire data repetitively for all active channels.

10 OUTPUT 707;”:RUN”
20 END

SERial (Serial Number)
Command :SERial {FRAMe | LMODule | RMODule},<string>

This command sets the serial number for the analyzer frame or module. The serial
number is entered by Agilent Technologies. Therefore, setting the serial number is not
normally required unless the analyzer is serialized for a different application.

<string> A ten-character alphanumeric serial number enclosed with quotation marks.

The analyzer’s serial number is part of the string returned for the *IDN? query,
described in Chapter 3, “Common Commands”.

Example This example sets the serial number for the analyzer's frame to “1234A56789”.

10 OUTPUT 707;":SERIAL FRAME,""1234A56789"""
20 END

Query :SERial? {FRAMe | LMODule | RMODule}
The query returns the current serial number string for the specified frame or module.

Returned Format [:SERial] <string><NL>
Example 10 Dim Serial$[50] !Dimension variable

20 OUTPUT 707;":SERIAL? FRAME"
30 ENTER 707; Serial$
40 PRINT SERIAL$
50 END

SINGle
Command :SINGle [CHANnel<N>]

Command is Subordinate to Ongoing Limit Tests

The execution of the RUN command is subordinate to the status of ongoing limit tests. (see com-
mands ACQuire:RUNTil on page 6-5, MTEST:RUNTil on page 17-9, and LTESt:RUNTil on page 15-5).
The RUN command will not restart a full data acquisiton if the stop condition for a limit test has
been met.

4-14

Root Level Commands
STOP

This command causes the analyzer to make a single acquisition when the next trigger
event occurs. It should be followed by *WAI, *OPC, or *OPC? in order to synchronize
data acquisition with remote control.

Example This example sets up the analyzer to make a single acquisition when the next trigger
event occurs.

10 OUTPUT 707;":SINGLE"
20 END

STOP
Command :STOP [CHANnel<N>]

This command causes the analyzer to stop acquiring data for the active display. If no
channel is specified, all active channels are affected.To restart the acquisition, use the
RUN or SINGle command.

<N> An integer, 1 through 4.

Example This example stops the current data acquisition on all active channels.

10 OUTPUT 707;":STOP"
20 END

STORe:SETup
Command :STORe:SETup <setup_memory_num>

This command saves the current analyzer setup in one of the setup memories.

<setup_memory_num> Setup memory number, an integer, 0 through 9.

STORe:WAVeform
Command :STORe:WAVeform <source>,<destination>

This command copies a channel, function, stored waveform, or TDR response to a
waveform memory or to color grade memory. The parameter preceding the comma
specifies the source and can be any channel, function, response, color grade memory,
or waveform memory. The parameter following the comma is the destination, and can
be any waveform memory.

N O T E This command operates on waveform and color grade gray scale data which is not
compatible with Jitter Mode. Do not use this command Jitter Mode. It generates a
“Settings conflict” error.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}

4-15

Root Level Commands
TER? (Trigger Event Register)

<destination> {WMEMory<N> | CGMemory}
<N> An integer, 1 through 4.

Example This example copies channel 1 to waveform memory 3.

10 OUTPUT 707;":STORE:WAVEFORM CHANNEL1,WMEMORY3"
20 END

TER? (Trigger Event Register)
Query :TER?

This query reads the Trigger Event Register. A “1” is returned if a trigger has occurred.
A “0” is returned if a trigger has not occurred.

Returned Format [:TER] {1 | 0}<NL>
Example This example checks the current status of the Trigger Event Register and places the

status in the string variable, Current$, then prints the contents of the variable to the
computer's screen.

10 DIM Current$[50] !Dimension variable
20 OUTPUT 707;":TER?"
30 ENTER 707;Current$
40 PRINT Current$
50 END
Once this bit is set, you can clear it only by reading the register with the TER? query, or
by sending a *CLS common command. After the Trigger Event Register is read, it is
cleared.

UEE (User Event Enable register)
Command :UEE <mask>

This command sets a mask into the User Event Enable register. A “1” in a bit position
enables the corresponding bit in the User Event Register to set bit 1 in the Status Byte
Register and, thereby, potentially cause an SRQ to be generated. Only bit 0 of the User
Event Register is used at this time; all other bits are reserved.

<mask> The decimal weight of the enabled bits.

Query :UEE?
The query returns the current decimal value in the User Event Enable register.

Returned Format [:UEE] <mask><NL>

Sources for Color Grade Memory

Only channels or functions can be sources for color grade memory.

4-16

Root Level Commands
UER? (User Event Register)

UER? (User Event Register)
Query :UER?

This query returns the current value of the User Event Register as a decimal number
and also clears this register. Bit 0 (LCL - Remote/Local change) is used. All other bits
are reserved.

Returned Format [:UER] <value><NL>

VIEW
Command :VIEW {CHANnel<N> | FUNCtion<N> | WMEMory<N> | JDMemory | RESPonse<N> | HISTogram |

CGMemory}
This command turns on a channel, function, waveform memory, jitter data memory,
TDR response, histogram, or color grade memory.

N O T E This command operates on waveform and color grade gray scale data which is not
compatible with Jitter Mode. Do not use this command in Jitter Mode with an argument
other than JDMemory. It generates a “Control is set to default” error for the HISTogram
argument and “Illegal parameter value” error for other arguments.

<N> An integer, 1 through 4.

Firmware Revision Re-
quired

4.00 and above (86100C instruments) for jitter data memory argument.

Example This example turns on channel 1.

10 OUTPUT 707;":VIEW CHANNEL1"
20 END

See Also The BLANk command turns off a channel, function, waveform memory, TDR response,
histogram, or color grade memory.

5

DATE 5-2
DSP 5-2
ERRor? 5-3
HEADer 5-5
LONGform 5-5
MODE 5-6
SETup 5-7
TIME 5-8

System Commands

5-2

System Commands
DATE

System Commands

SYSTem subsystem commands control the way in which query responses are format-
ted, send and receive setup strings, and enable reading and writing to the advisory line
of the analyzer. You can also set and read the date and time in the analyzer using the
SYSTem subsystem commands.

DATE
Command :SYSTem:DATE <day>,<month>,<year>

This command sets the date in the analyzer, and is not affected by the *RST common
command.

<day> Specifies the day in the format <1. . . .31>.

<month> Specifies the month in the format <1, 2,12> | <JAN, FEB, MAR>.

<year> Specifies the year in the format <yyyy> | <yy>. The values range from 1992 to 2035.

Example The following example sets the date to July 1, 1997.

10 OUTPUT 707;":SYSTEM:DATE 7,1,97"
20 END

Query :SYSTem:DATE?
The query returns the current date in the analyzer.

Returned Format [:SYSTem:DATE] <day> <month> <year>><NL>
Example The following example queries the date.

10 DIM Date$ [50]
20 OUTPUT 707;":SYSTEM:DATE?"
30 ENTER 707; Date$
40 PRINT Date$

DSP
Command :SYSTem:DSP <string>

This command writes a quoted string, excluding quotation marks, to the advisory line
of the instrument display. If you want to clear a message on the advisory line, send a
null (empty) string.

5-3

System Commands
ERRor?

<string> An alphanumeric character array up to 92 bytes long.

Example The following example writes the message, “Test 1” to the advisory line of the analyzer.

10 OUTPUT 707;":SYSTEM:DSP ""Test 1"""
20 END

Query :SYSTem:DSP?
The query returns the last string written to the advisory line. This may be a string writ-
ten with a SYSTem:DSP command, or an internally generated advisory.

The string is actually read from the message queue. The message queue is cleared
when it is read. Therefore, the displayed message can only be read once over the bus.

Returned Format [:SYSTem:DSP] <string><NL>
Example The following example places the last string written to the advisory line of the analyzer

in the string variable, Advisory$. Then, it prints the contents of the variable to the con-
troller's screen.

10 DIM Advisory$[89] !Dimension variable
20 OUTPUT 707;":SYSTEM:DSP?"
30 ENTER 707;Advisory$
40 PRINT Advisory$
50 END

ERRor?
Query :SYSTem:ERRor? [{NUMBer | STRing}]

This query outputs the next error number in the error queue over the GPIB. When
either NUMBer or no parameter is specified in the query, only the numeric error code is
output. When STRing is specified, the error number is output followed by a comma and
a quoted string describing the error. Table 1-10 on page 1-62 lists the error numbers
and their corresponding error messages. The error messages are also listed in “Error
Messages” on page 1-60, where possible causes are given for each message.

Returned Format [:SYSTem:ERRor] <error_number>[,<quoted_string>]<NL>
<error_number> A numeric error code.

<quoted_string> A quoted string describing the error.

Example The following example reads the oldest error number and message in the error queue
into the string variable, Condition$, then prints the contents of the variable to the con-
troller's screen.

10 DIM Condition$[64] !Dimension variable
20 OUTPUT 707;":SYSTEM:ERROR? STRING"
30 ENTER 707;Condition$
40 PRINT Condition$
50 END
This analyzer has an error queue that is 30 errors deep and operates on a first-in, first-
out (FIFO) basis. Successively sending the SYSTem:ERRor query returns the error
numbers in the order that they occurred until the queue is empty. When the queue is

5-4

System Commands
ERRor?

empty, this query returns headers of 0, “No error.” Any further queries return zeros
until another error occurs. Note that front-panel generated errors are also inserted in
the error queue and the Event Status Register.

See Also “Error Messages” on page 1-60 for more information on error messages and their possi-
ble causes.

Send *CLS Before Other Commands or Queries

Send the *CLS common command to clear the error queue and Event Status Register before you
send any other commands or queries.

Table 5-1. Error Messages

Error
Number

Description
Error
Number

Description

0 No error −160 Block data error
−100 Command error −161 Invalid block data
−101 Invalid character −168 Block data not allowed
−102 Syntax error −170 Expression error
−103 Invalid separator −171 Invalid expression
−104 Data type error −178 Expression data not allowed
−105 GET not allowed −200 Execution error
−108 Parameter not allowed −222 Data out of range
−109 Missing parameter −223 Too much data
−112 Program mnemonic too long −224 Illegal parameter value
−113 Undefined header −241 Hardware missing
−121 Invalid character in number −256 File name not found
−123 Numeric overflow −310 System error
−124 Too many digits −350 Too many errors
−128 Numeric data not allowed −400 Query error
−131 Invalid suffix −410 Query INTERRUPTED
−138 Suffix not allowed −420 Query UNTERMINATED
−141 Invalid character data −430 Query DEADLOCKED
−144 Character data too long −440 Query UNTERMINATED

after indefinite response
−158 String data not allowed

5-5

System Commands
HEADer

HEADer
Command :SYSTem:HEADer {{ON | 1} | {OFF | 0}}

This command specifies whether the instrument will output a header for query
responses. When SYSTem:HEADer is set to ON, the query responses include the com-
mand header.

Example The following example sets up the analyzer to output command headers with query
responses.

10 OUTPUT 707;":SYSTEM:HEADER ON"
20 END

Query :SYSTem:HEADer?
The query returns the state of the SYSTem:HEADer command.

Returned Format [:SYSTem:HEADer] {1 | 0}<NL>
Example This example examines the header to determine the size of the learn string. Memory is

then allocated to hold the learn string before reading it. To output the learn string, the
header is sent, then the learn string and the EOF.

10 DIM Header$[64]
20 OUTPUT 707;"syst:head on"
30 OUTPUT 707;":syst:set?"
40 More_chars: !
50 ENTER 707 USING "#,A";This_char$
60 Header$=Header$&This_char$
70 IF This_char$<>"#" THEN More_chars
80 !
90 ENTER 707 USING "#,D";Num_of_digits
100 ENTER 707 USING "#,"&VAL$(Num_of_digits)&"D";Set_size
110 Header$=Header$&"#"&VAL$(Num_of_digits)&VAL$(Set_size)
120!
130 ALLOCATE INTEGER Setup(1:Set_size)
140 ENTER 707 USING "#,B";Setup(*)
150 ENTER 707 USING "#,A";Eof$
160 !
170 OUTPUT 707 USING "#,-K";Header$
180 OUTPUT 707 USING "#,B";Setup(*)
190 OUTPUT 707 USING "#,A";Eof$
200

LONGform
Command :SYSTem:LONGform {ON | 1 | OFF | 0}

Turn Headers Off when Returning Values to Numeric Variables

Turn headers off when returning values to numeric variables. Headers are always off for all common
command queries because headers are not defined in the IEEE 488.2 standard.

5-6

System Commands
MODE

This command specifies the format for query responses. If the LONGform is set to OFF,
command headers and alpha arguments are sent from the instrument in the short form
(abbreviated spelling). If LONGform is set to ON, the whole word is output.

This command has no effect on input headers and arguments sent to the instrument.
Headers and arguments may be sent to the instrument in either the long form or short
form, regardless of the current state of the LONGform command.

Example The following example sets the format for query response from the instrument to the
short form (abbreviated spelling).

10 OUTPUT 707;":SYSTEM:LONGFORM OFF"
20 END

Query :SYSTem:LONGform?
The query returns the current state of the SYSTem:LONGform command.

Returned Format [:SYSTem:LONGform] {0 | 1}<NL>
Example The following example checks the current format for query responses from the oscillo-

scope and places the result in the string variable, Result$, then prints the contents of
the variable to the controller’s screen.

10 DIM Result$[50] !Dimension variable
20 OUTPUT 707;":SYSTEM:LONGFORM?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

MODE
Command :SYSTem:MODE {EYE | OSCilloscope | TDR | JITTer}

This command sets the system mode. Specifying Eye/Mask mode, turns off all active
channels except the lowest numbered channel.

Firmware Revision Re-
quired

4.00 and above (86100C instruments) for Jitter mode argument. Jitter mode is only
available on 86100C mainframes with the Jitter Analysis application.

Example The following example sets the instrument mode to Eye/Mask mode.

10 OUTPUT 707;":SYSTEM:MODE EYE"
20 END

Averaging Changing to Eye/Mask mode turns off averaging for all modes unless Pattern Lock
(":TRIGger:PLOCk") is turned on. If a TDR/TDT module is present, changing to TDR/
TDT mode using ths command turns on averaging for both TDR/TDT and Oscilloscope
modes.

Query :SYSTem:MODE?
The query returns the current state of the SYSTem:MODE command.

Returned Format [:SYSTem:MODE] {EYE | OSC | TDR | JITT}
Example The following example checks the current instrument mode of the analyzer, and places

the result in the string variable, Result$. Then, it prints the contents of the variable to
the controller's screen.

5-7

System Commands
SETup

10 DIM Result$[50] !Dimension variable
20 OUTPUT 707;":SYSTEM:MODE?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

Commands Unavailable
in Jitter Mode

Because some DCA features are unavailable in Jitter Mode, the following commands
generate errors or use limited arguments. Refer to the individual commands for spe-
cific information.

:ACQuire:AVERage
:ACQuire:BEST
:ACQuire:POINts
:ACQuire:SWAVeform
:ACQuire:SWAVeform?
:CALibrate:SKEW
:CALibrate:SKEW?
:CALibrate:SKEW:AUTO
:CHANnel<N>:SCALe
:CHANnel<N>:RANGe
:CHANnel<N>:OFFSet
:DISK:LOAD
:DISK:STORe
:HISTogram:MODE
:LTESt:SWAVeform
:LTESt:SWAVeform?
:MTESt:SWAVeform
:MTESt:SWAVeform?
:STORe:WAVeform
:TIMebase:POSition
:TIMebase:RANGe
:TIMebase:SCALe
:VIEW
:VIEW HISTogram
:WAVeform:DATA
:WAVeform:DATA?
:WMEMory<N>:LOAD
:WMEMory<N>:SAVE
:WMEMory<N>:DISPlay

SETup
Command :SYSTem:SETup <binary_block_data>

This command sets up the instrument as defined by the data in the setup string from
the controller.

<binary_block_data> A string, consisting of bytes of setup data. The number of bytes is a dynamic number
that is read and allocated by the analyzer’s software.

Example The following example sets up the instrument as defined by the setup string stored in
the variable, Set$.

10 OUTPUT 707 USING "#,-K";":SYSTEM:SETUP ";Set$
20 END

5-8

System Commands
TIME

Query :SYSTem:SETup?
The query outputs the instrument's current setup to the controller in binary block data
format as defined in the IEEE 488.2 standard.

Returned Format [:SYSTem:SETup] #NX...X<setup data string><NL>
The first character in the setup data string is a number added for disk operations.

Example The following example stores the current instrument setup in the string variable, Set$.

10 DIM Set$[15000] !Dimension variable
20 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
30 OUTPUT 707;":SYSTEM:SETUP?"
40 ENTER 707 USING "-K";Set$
50 END

TIME
Command :SYSTem:TIME <hour>,<minute>,<second>

This command sets the time in the instrument, and is not affected by the *RST com-
mon command.

<hour> 0. . . .23

<minute> 0. . . .59

<second> 0. . . .59

Example 10 OUTPUT 707;":SYSTEM:TIME 10,30,45"
20 END

Query :SYSTem:TIME?

HP BASIC Image Specifiers

is an HP BASIC image specifier that suppresses the automatic output of the EOI sequence follow-
ing the last output item.

K is an HP BASIC image specifier that outputs a number or string in standard form with no leading or
trailing blanks.

HP BASIC Image Specifiers

−K is an HP BASIC image specifier which places the block data in a string, including carriage returns
and line feeds, until EOI is true, or when the dimensioned length of the string is reached.

SYSTem:SETup Can Operate Just Like *LRN

When headers and LONGform are on, the SYSTem:SETup query operates the same as the *LRN
query in the common commands. Otherwise, *LRN and SETup are not interchangeable.

5-9

System Commands
TIME

The query returns the current time in the instrument.

Returned Format [:SYSTem:TIME] <hour>,<minute>,<second>

5-10

System Commands
TIME

6

AVERage 6-2
BEST 6-2
COUNt 6-3
EYELine 6-3
LTESt 6-4
POINts 6-4
RUNTil 6-5
SSCReen 6-6
SSCReen:AREA 6-8
SSCReen:IMAGe 6-8
SWAVeform 6-9
SWAVeform:RESet 6-10

Acquire Commands

6-2

Acquire Commands
AVERage

Acquire Commands

The ACQuire subsystem commands set up conditions for acquiring waveform data,
including the DIGitize root level command. The commands in this subsystem select the
number of averages and the number of data points. This subsystem also includes com-
mands to set limits on how much data is acquired, and specify actions to execute when
acquisition limits are met.

AVERage
Command :ACQuire:AVERage {{ON | 1} | {OFF | 0}}

This command enables or disables averaging. When ON, the analyzer acquires multiple
data values for each time bucket, and averages them. When OFF, averaging is disabled.
To set the number of averages, use the :ACQuire:COUNt command described later in
this chapter.

N O T E Do not use this command Jitter Mode. It generates a “Settings conflict” error.

Example This example turns averaging on.

10 OUTPUT 707;":ACQUIRE:AVERAGE ON"
20 END

Query :ACQuire:AVERage?
Returned Format [:ACQuire:AVERage] {1 | 0}<NL>

BEST
Command :ACQuire:BEST {THRuput | FLATness}

When averaging is enabled with ACQuire:AVERage, the FLATness option improves the
step flatness by using a signal processing algorithm within the instrument. You should
use this option when performing TDR measurements or when step flatness is impor-
tant. The THRuput option improves the instrument’s throughput and should be used
whenever best flatness is not required.

N O T E Do not use this command Jitter Mode. It generates a “Settings conflict” error.

Example The following example sets the instrument to best step flatness.

10 OUTPUT 707;":ACQUIRE:BEST FLATNESS"

6-3

Acquire Commands
COUNt

20 END
Query :ACQuire:BEST?

The query returns the current acquisition algorithm setting.

Returned Format [:ACQuire:BEST] {THRuput | FLATness}<NL>
Example The following example obtains the current setting of the acquisition algorithm from the

instrument, stores it in the variable, Best$, then prints the contents of the variable to
the controller’s screen.

10 DIM Best$[50] !Define variable
20 OUTPUT 707;":ACQUIRE:BEST?"
30 ENTER 707;Best$
40 PRINT Best$
50 END

COUNt
Command :ACQuire:COUNt <value>

This command sets the number of averages for the waveforms. In the AVERage mode,
the ACQuire:COUNt command specifies the number of data values to be averaged for
each time bucket before the acquisition is considered complete for that time bucket.

<value> An integer, 1 to 4096, specifying the number of data values to be averaged.

Example The following example specifies that 16 data values must be averaged for each time
bucket to be considered complete.

10 OUTPUT 707;":ACQUIRE:COUNT 16"
20 END

Query :ACQuire:COUNt?
The query returns the currently selected count value.

Returned Format [:ACQuire:COUNt] <value><NL>
<value> An integer, 1 to 4096, specifying the number of data values to be averaged.

Example The following example checks the currently selected count value and places that value
in the string variable, Result$. Then the program prints the contents of the variable to
the controller’s screen.

10 DIM Result$[50] !Dimension variable
20 OUTPUT 707;":ACQUIRE:COUNT?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

EYELine
Command :ACQuire:EYELine {{ON | 1} | {OFF | 0}}

6-4

Acquire Commands
LTESt

This command enables or disables eyeline mode. It is only available when pattern lock
is turned on in Oscilloscope or Eye/Mask modes. When eyeline is turned on, the rela-
tive trigger bit is incremented after each acquisition. When combined with averaging,
averaged eyes can be acquired. Pattern lock and eyeline are only available on an
86100C mainframe with option 001.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example This example turns eyeline on.

10 OUTPUT 707; ":ACQUIRE:EYELINE ON"
20 END

Query :ACQuire:EYELine?
Returned Format [:ACQuire:EYELine] {1 | 0}<NL>

LTESt
Command :ACQuire:LTESt [ALL | INDividual]

This command sets the mode for acquisition limit tests. The default is ALL. When it is
set to INDividual, the :ACQuire:RUNtil command can be used with the optional channel
parameter to specify runtil conditions for each channel individually. When it is set to
ALL, acquisition limit tests are performed on all channels simultaneously.

Example The following example sets mode for acquisition limit tests to individual.

10 OUTPUT 707;":ACQUIRE:LTEST INDIVIDUAL"
20 END

Query :ACQuire:LTESt?
Returned Format [:ACQuire:LTESt] {ALL | IND} <NL>
Example The following example retrieves the made for acquisition limit tests and places the

value in the string variable, Result.

10 DIM Result$[50] !Dimension variable
20 OUTPUT 707;":ACQUIRE:LTEST?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

POINts
Command :ACQuire:POINts {AUTO | <points_value>}

This command sets the requested memory depth for an acquisition. Always query the
points value with the WAVeform:POINts query or WAVeform:PREamble to determine
the actual number of acquired points.

You can set the points value to AUTO, which allows the analyzer to select the number
of points based upon the sample rate and time base scale.

6-5

Acquire Commands
RUNTil

N O T E This command operates on waveform data which is not compatible with Jitter Mode. Do
not use this command in Jitter Mode. It generates a “Settings conflict” error.

<points_value> An integer representing the memory depth. The points value range is 16 to 4096
points.

Example This example sets the memory depth to 500 points.

10 OUTPUT 707;":ACQUIRE:POINTS 500"
20 END

Query :ACQuire:POINts?
The query returns the requested memory depth.

Returned Format [:ACQuire:POINts] <points_value><NL>
Example This example checks the current setting for memory depth and places the result in the

string variable, Length$. Then the program prints the contents of the variable to the
controller’s screen.

10 DIM Length$[50] !Dimension variable
20 OUTPUT 707;":ACQUIRE:POINTS?"
30 ENTER 707;Length$
40 PRINT Length$
50 END

See Also :WAVeform:DATA

RUNTil
Command :ACQuire:RUNTil {OFF | WAVeforms,<number_of_waveforms> | SAMples, <number_of_samples> |

PATTerns,<number_of_pattern_repetitions>}[,CHANnel<N>]
This command selects the acquisition run until mode. The acquisition may be set to run
until n waveforms, n patterns, or n samples have been acquired, or to run forever
(OFF). If more than one run until criteria is set, then the instrument will act upon the
completion of whichever run until criteria is achieved first.

The 86100C PATTerns argument is valid only when the Eyeline feature is on or when
the 86100C is in Jitter Mode.

The optional channel parameter can be set to specify RUNTil conditions on each chan-
nel individually when the :ACQuire:LTESt command is set to INDividual. If the acquisi-
tion limit test mode is set to INDividual and the :ACQuire:RUNTil OFF command is sent
with no channel specified, all channels will be set to OFF. To turn off acquisition limit
tests for an individual channel, you must specify the channel.

<number_of_
waveforms

An integer, 1 through 231–1.

<number_of_samples> An integer, 1 through 231–1.

<number_of_pattern_re
petitions>

An integer, 1 through 231–1.

<N> An integer, 1 through 4.

6-6

Acquire Commands
SSCReen

Firmware Revision Re-
quired

4.00 and above (86100C instruments) for the PATTerns argument.

Example 1 The following example specifies that the acquisition runs until 200 samples have been
obtained.

10 OUTPUT 707;”:ACQuire:RUNTIL SAMPLES,200”
20 END

Example 2 The following example specifies that Channel 1 acquisition runs until 300 waveforms
have been obtained.

write_IO (“:ACQuire:LTESt IND”);
write_IO (“:ACQuire:RUNTil WAVeforms, 300, CHANnel1”);

Query :ACQuire:RUNTil? [CHANnel<N>]
The query returns the currently selected run until state. If the channel parameter is
specified, the run until state of the specified channel is returned.

Returned Format [:ACQuire:RUNTil] {OFF | WAVeform, <n waveforms> | PATT,<number_of_pattern_repetitions> |
SAMPles, <n samples>}<NL>

Example The following example returns the result of the run until query and prints it to the con-
troller’s screen.

10 DIM Runt$[50]
20 OUTPUT 707;”:ACQuire:RUNTIL?”
30 ENTER 707;Runt$
40 PRINT Runt$
50 END

SSCReen
Command :ACQuire:SSCReen {OFF | DISK [,<filename>]}

This command saves a copy of the screen when the acquisition limit is reached.

OFF Turns off the save action.

DISK A different set of commands is provided to control the print to disk.

<filename> An ASCII string enclosed in quotation marks. If no filename is specified, a default file-
name is assigned. This filename will be AcqLimitScreenX.bmp, where X is an incre-
mental number assigned by the instrument.

Save Screen Options

The save screen options established by the commands ACQuire:SSCReen DISK,
ACQuire:SSCReen:AREA, and ACQuire:SSCReen:IMAG are stored in the instrument’s memory and
will be employed in consecutive save screen operations, until changed by the user. This includes
the <filename> parameter for the ACQuire:SSCReen DISK command. If the results of consecutive
limit tests must be stored in different files, omit the <filename> parameter and use the default
filename instead. Each screen image will be saved in a different file named AcqLimitScreenX.bmp,
where X is an incremental number assigned by the instrument.

6-7

Acquire Commands
SSCReen

The filename field encodes the network path and the directory in which the file will be
saved, as well as the file format that will be used. The following is a list of valid filena-
mes.

If a filename is specified without a path, the default path will be
D:\User Files\screen images. The default file type is a bitmap (.bmp). The
following graphics formats are available by specifying a file extension: PCX files (.pcx),
EPS files (.eps), Postscript files (.ps), JPEG files (.jpg), TIFF files (.tif), and GIF files
(.gif).

Example The following example saves a copy of the screen to the disk when acquisition limit is
reached. Additional disk-related controls are set using the SSCReen:AREA and
SSCReen:IMAGe commands.

10 OUTPUT 707;”:ACQUIRE:SSCREEN DISK”
20 END

Query :ACQuire:SSCReen?
The query returns the current state of the SSCReen command.

Returned Format [:ACQuire:SSCReen] {OFF | DISK [,<filename>]}<NL>
Example The following example returns the destination of the save screen when acquisition limit

is reached and prints the result to the controller’s screen.

10 DIM SSCR$[50]
20 OUTPUT 707;”:ACQUIRE:SSCREEN?”

Valid Filenames

Filename File Saved in Directory...

“Test1.gif” D:\User Files\Screen Images\

“A:test2.pcx” A:\

“.\screen2.jpg” File saved in the present working directory, set
with the command :DISK:CDIR.

“\\computer-ID\d$\test3.bmp” File saved in drive D: of computer “computer-ID”,
provided all permissions are set properly.

“E:test4.eps” File saved in the instrument’s drive E:, that could
be mapped to any disk in the network.

.gif, .tif, and .jpg Formats

For .gif and .tif file formats, this instrument uses LZW compression/decompression
licensed under U.S. patent No 4,558,302 and foreign counterparts. End user should not
modify, copy, or distribute LZW compression/decompression capability.

For .jpg file format, this instrument uses the .jpg software written by the Independent JPEG Group.

6-8

Acquire Commands
SSCReen:AREA

30 ENTER 707;SSCR$
40 PRINT SSCR$
50 END

SSCReen:AREA
Command :ACQuire:SSCReen:AREA {GRATicule | SCReen}

This command selects which data from the screen is to be saved to disk when the run
until condition is met. When you select GRATicule, only the graticule area of the screen
is saved (this is the same as choosing Waveforms Only in the Specify Report Action for
acquisition limit test dialog box). When you select SCReen, the entire screen is saved.

Example This example selects the graticule for saving.

10 OUTPUT 707;":ACQUIRE:SSCREEN:AREA GRATICULE"
20 END

Query :ACQuire:SSCReen:AREA?
The query returns the current setting for the area of the screen to be saved.

Returned Format [:ACQuire:SSCReen:AREA] {GRATicule | SCReen}<NL>
Example This example places the current selection for the area to be printed in the string vari-

able, Selection$, then prints the contents of the variable to the computer's screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":ACQUIRE:SSCREEN:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

SSCReen:IMAGe
Command :ACQuire:SSCReen:IMAGe {NORMal | INVert | MONochrome}

This command saves the screen image to disk normally, inverted, or in monochrome.
IMAGe INVert is the same as choosing Invert Background Waveform Color in the Spec-
ify Report Action for acquisition limit test dialog box.

Example This example sets the image output to normal.

10 OUTPUT 707;":ACQuire:SSCReen:IMAGE NORMAL"
20 END

Query :ACQuire:SSCReen:IMAGe?
The query returns the current image setting.

Returned Format [:ACQuire:SSCReen:IMAGe] {NORMal | INVert | MONochrome}<NL>
Example This example places the current setting for the image in the string variable, Setting$,

then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":ACQUIRE:SSCREEN:IMAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$

6-9

Acquire Commands
SWAVeform

50 END

SWAVeform
Command :ACQuire:SWAVeform <source>, <destination> [,<filename>[, <format>]]

This command saves waveforms from a channel, function, TDR response, or waveform
memory when the number of waveforms or samples as specified in the limit test is
acquired. Each waveform source can be individually specified, allowing multiple chan-
nels, responses, or functions to be saved to disk or waveform memories. Setting a par-
ticular source to OFF removes any waveform save action from that source.

N O T E This command operates on waveform and color grade gray scale data which is not
compatible with Jitter Mode. Do not use this command Jitter Mode. It generates a
“Settings conflict” error.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}
<destination> {OFF | WMEMory<N>| DISK}
<filename> An ASCII string enclosed in quotes. If no filename is specified, a default filename will be

assigned. The default filenames will be AcqLimitChN_X, AcqLimitFnN_X,
AcqLimitMemN_X or AcqLimitRspN_X, where X is an incremental number assigned
by the instrument.

If a specified filename contains no path, the default path will be D:\User Files\wave-
forms.

<format> {TEXT [,YVALues | VERBose] | INTernal}
Where INTernal is the default format, and VERBose is the default format for TEXT.

Example The following example turns off the saving of waveforms from channel 1.

10 OUTPUT 707;”:ACQUIRE:SWAVEFORM CHAN1,OFF”
20 END

Query :ACQuire:SWAVeform? <source>
The query returns the current state of the :ACQuire:SWAVeform command.

Returned Format [:ACQuire:SWAVeform]<source>, <destination> [,<filename>[,<format>]]<NL>
Example The following example returns the current parameters for saving waveforms.

Storing Consecutive Limit Tests

If the selected waveforms of consecutive limit tests are to be stored in individual files,
omit the <filename> parameter. The waveforms will be stored in the default format
(INTERNAL) using the default naming scheme.

6-10

Acquire Commands
SWAVeform:RESet

10 DIM SWAV$[50]
20 OUTPUT 707;”:ACQUIRE:SWAVEFORM? CHANNEL1”
30 ENTER 707;SWAV$
40 PRINT SWAV$
50 END

SWAVeform:RESet
Command :ACQuire:SWAVeform:RESet

This command sets the save destination for all waveforms to OFF. Setting a source to
OFF removes any waveform save action from that source. This is a convenient way to
turn off all saved waveforms if it is unknown which are being saved.

Example 10 OUTPUT 707;”:ACQuire:SWAVeform:RESet”
20 END

7

Mainframe Calibration 7-2
Module Calibration 7-2
Probe Calibration 7-4
Calibration Commands 7-4

CANCel 7-5
CONTinue 7-5
ERATio:DLEVel? 7-5
ERATio:STARt 7-5
ERATio:STATus? 7-6
FRAMe:LABel 7-6
FRAMe:STARt 7-6
FRAMe:TIME? 7-6
MODule:LRESistance 7-7
MODule:OCONversion? 7-7
MODule:OPOWer 7-7
MODule:OPTical 7-8
MODule:OWAVelength 7-8
MODule:STATus? 7-8
MODule:TIME? 7-9
MODule:VERTical 7-9
OUTPut 7-9
PROBe 7-10
RECommend? 7-10
SAMPlers 7-11
SDONe? 7-11
SKEW 7-12
SKEW:AUTO 7-12
STATus? 7-13

Calibration Procedure 7-13

Calibration Commands

7-2

Calibration Commands

Calibration Commands

This section briefly explains the calibration of the 86100A digital communications ana-
lyzer. It is intended to give you and the calibration lab personnel an understanding of
the calibration procedure and how the calibration subsystem is intended to be used.
Also, this section acquaints you with the terms used in this chapter, help screens, and
data sheets.

A calibration procedure is included at the end of this chapter.

Mainframe Calibration

Mainframe calibration establishes calibration factors for the analyzer. These factors are
stored in the analyzer's hard disk. You initiate the calibration from the Calibration
menu or by sending the :CALibrate:FRAMe:STARt command.

You should calibrate the analyzer mainframe periodically (at least annually), or if the
ambient temperature since the last calibration has changed more than ±5°C. The tem-
perature change since the last calibration is shown on the calibration status screen
which is found under the Mainframe and Skew tab on the All Calibrations dia-
log box. It is the line labeled:

Cal ∆T ____________ °C.

See Also The Service Guide has more details about the mainframe calibration.

Module Calibration

You initiate a module calibration from the Modules tab on the
All Calibrations dialog box or by sending the :CALibrate:MODule:VERTical com-
mand.

Module calibration, also known as vertical calibration, is used to enhance the measure-
ment precision of the instrument. It is recommended you routinely perform this cali-
bration for best measurement accuracy.

7-3

Calibration Commands

When a module calibration is performed, the instrument establishes calibration factors
for the module. The calibration factors compensate for imperfections in the measure-
ment system, such as variations due to the ambient temperature. This results in the
best instrument precision. The module calibration factors are valid only for the main-
frame and slot in which the module was calibrated. You can install the module in the
slots provided for Channels 1 and 2, or for Channel 3 and 4.

The module calibration is self-contained so the instrument does not require an external
equipment setup. In fact, the instrument will display a message box instructing you to
remove or disable all inputs to the module to be calibrated. The duration of the calibra-
tion is typically between 60 and 90 seconds.

A module calibration is recommended when:

• the instrument power has been cycled

• a module has been removed and then reinserted since the last calibration

• a change in the temperature of the module exceeds 5°C compared to the tem-
perature of the last module calibration (∆T > 5°C)

• The time since the last calibration has exceeded 10 hours

C A U T I O N The input circuits can be damaged by electrostatic discharge (ESD). Avoid
applying static discharges to the front-panel input connectors. Momentarily
short the center and outer conductors of coaxial cables prior to connecting
them to the front-panel inputs. Before touching the front-panel input

Let the Module Warm Up First

In order for the calibration to be accurate, the temperature of the module must reach equilibrium
prior to performing the calibration.

Affect of Reinserting the Module

Reinserting the module into the mainframe can affect the electrical connections, which in turn can
affect the calibration accuracy.

∆T Value

A positive value for ∆T indicates how many degrees warmer the current module temperature is
compared to the temperature of the module at the time of the last module calibration.

7-4

Calibration Commands

connectors be sure to first touch the frame of the instrument. Be sure the
instrument is properly earth-grounded to prevent buildup of static charge.
Wear a wrist-strap or heel-strap.

Probe Calibration

The probe calibration is initiated from the Probe tab on the “Calibrate/All Calibrations”
dialog or by sending either the :CALibrate:PROBe command or the :CHAN-
nel<N>:PROBe:CALibrate command.

The probe calibration allows the instrument to identify the offset and the gain, or loss,
of specific probes that are connected to an electrical channel of the instrument. Those
factors are then applied to the calibration of that channel. The instrument calibrates
the vertical scale and offset based on the voltage measured at the tip of the probe or
the cable input.

Typically probes have standard attenuation factors, such as divide by 10, divide by 20,
or divide by 100. If the probe being calibrated has a non-standard attenuation, the
instrument will adjust the vertical scale factors of the input channel to match this
attenuation.

C A U T I O N The input circuits can be damaged by electrostatic discharge (ESD). Avoid
applying static discharges to the front-panel input connectors. Momentarily
short the center and outer conductors of coaxial cables prior to connecting
them to the front-panel inputs. Before touching the front-panel input
connectors be sure to first touch the frame of the instrument. Be sure the
instrument is properly earth-grounded to prevent buildup of static charge.
Wear a wrist-strap or heel-strap.

Calibration Commands

The commands in the CALibration subsystem initiate the analyzer calibration over
GPIB.

The Instrument Adjusts Vertical Scale Factors

For passive or non-identified probes, the instrument adjusts the vertical scale factors only if a
probe calibration is performed.

7-5

Calibration Commands
CANCel

CANCel
Command :CALibrate:CANCel

This command cancels normalization when a calibration message box prompt is dis-
played.

Example This example cancels the analyzer calibration.

10 OUTPUT 707;":CALIBRATE:CANCEL"
20 END

CONTinue
Command :CALibrate:CONTinue

This command continues normalization when a calibration message box prompt is dis-
played.

Example This example continues the analyzer calibration.

10 OUTPUT 707;":CALIBRATE:CONTINUE"
20 END

ERATio:DLEVel?
Query :CALibrate:ERATio:DLEVel? CHANnel<N>
<N> An integer, from 1 to 4.

This query returns the dark level value for the specified channel. If an extinction ratio
calibration has been performed the returned value is the calibration result. If no cali-
bration has been performed the default value of 0.0 is returned.

Returned Format [:CALibrate:ERATio:DLEVel] <value><NL>

ERATio:STARt
Command :CALibrate:ERATio:STARt CHANnel<N>

This command starts an extinction ratio calibration. Before performing an extinction
ratio calibration, display an eye diagram and adjust the vertical scale and offset so that
the eye diagram uses the full display. Also, the dark level (the signal level when there is

Let the Analyzer Warm Up First

Let the analyzer warm up for at least 1 hour before you calibrate it.

7-6

Calibration Commands
ERATio:STATus?

no input to the measurement) must be on the screen to be correctly measured. To con-
tinue the calibration after disconnecting the input signal, send the :CALibrate:CON-
Tinue command.

<N> An integer, from 1 to 4.

ERATio:STATus?
Query :CALibrate:ERATio:STATus? CHANnel<N>

This query indicates whether the ratio being used is the result of an extinction ratio
calibration or is the factory default value. The query returns CALIBRATED or
DEFAULTED.

<N> An integer, 1 through 4.

Returned Format [:CALibrate:ERATio:STATus] {CALIBRATED | DEFAULTED}<NL>

FRAMe:LABel
Command :CALibrate:FRAMe:LABel <label>

This command is intended for user notes, such as name/initials of the calibrator or spe-
cial notes about the calibration. It accepts a string of up to 80 characters. The informa-
tion is optional.

<label> A string, enclosed with quotes, with a maximum of 80 characters.

Query :CALibrate:FRAMe:LABel?
The query returns the currently defined label for the frame.

Returned Format [:CALibrate:FRAMe:LABel] <quoted string><NL>

FRAMe:STARt
Command :CALibrate:FRAMe:STARt

This command starts the annual calibration on the instrument mainframe.

FRAMe:TIME?
Query :CALibrate:FRAMe:TIME?

This query returns the date, time and temperature at which the last full frame calibra-
tion process was completed.

Returned Format [:CALibrate:FRAMe:TIME] <time> <NL>
<time> Is in the format: DD MMM YY HH:MM <delta_temp>

7-7

Calibration Commands
MODule:LRESistance

<delta_temp> Is the difference between the current temperature and the temperature when the last
calibration was done. For example, <delta_temp> might be:

–5C
10C
–12C

MODule:LRESistance
Command :CALibrate:MODule:LRESistance <resistance_value>

This command sets the load resistance value used during module calibration of a TDR
module. The accuracy of the calibration is improved by specifying the exact resistance
value of the load that is connected to the TDR module during the calibration process.

<resistance_value> The resistance of the load from 47 to 53 ohm. The default value is the target value of 50
ohm.

Example This example sets the load resistance value to 49.9 ohms.

10 OUTPUT 707;”:CALIBRATE:MODULE:LRESISTANCE 49.9”
20 END

Query :CALibrate:MODule:LRESistance?
The query returns the resistance value in ohms for the load used during module cali-
bration of a TDR module.

Returned Format [:CALibrate:MODule:LRESistance] <resistance_value><NL>

MODule:OCONversion?
Query :CALibrate:MODule:OCONversion? {LMODule | RMODule | CHANnel<N>},{WAVelength 1 | WAVelength

2 | USER}
This query returns the optical conversion (responsivity) of the specified channel at the
specified wavelength. Wavelength 1 and Wavelength 2 are for factory-calibrated wave-
lengths. USER is the result of a user optical calibration.

If LMOD or RMOD is specified for a dual optical module, the optical conversion of chan-
nel 1 (for LMOD) or channel 3 (for RMOD) will be returned.

<N> An integer, 1 through 4.

Returned Format [:CALibrate:MODule:OCONversion] <value><NL>

MODule:OPOWer
Command :CALibrate:MODule:OPOWer <optical_power_value>

This command sets the optical power level for an optical channel module calibration.
This command should only be used for modules with an optical channel.

Example 10 OUTPUT 707;":CALIBRATE:MODULE:OPOWER 500E–6"
20 END

7-8

Calibration Commands
MODule:OPTical

MODule:OPTical
Command :CALibrate:MODule:OPTical {CHANnel<N>}

This command initiates an O/E calibration on the selected channel. The selected chan-
nel must be an optical channel.

<N> An integer, 1 through 4.

Example 10 DIM Prompt $[64]
20 OUTPUT 707;":CALIBRATE:MODULE:OPTICAL CHAN1"
30 OUTPUT 707;":CALIBRATE:SDONE?"
40 ENTER 707;Prompt$ <Disconnect optical source form channel 1>
50 OUTPUT 707;":CALIBRATE:CONTINUE"
60 OUTPUT 707;":CALIBRATE:SDONE?"
70 ENTER 707;Prompt$ <Enter wavelength and power of optical source>
80 OUTPUT 707;":CALIBRATE:MODULE:OWAVELENGTH 1340E–9"
90 OUTPUT 707;":CALIBRATE:MODULE:OPOWER 500E–6"
100 OUTPUT 707;":CALIBRATE:CONTINUE"
110 OUTPUT 707;":CALIBRATE:SDONE?"
120 ENTER 707;Prompt$ <Connect optical source to channel 1>
130 OUTPUT 707;":CALIBRATE:CONTINUE"
140 OUTPUT 707;":CALIBRATE:SDONE?"
150 ENTER 707;Prompt$ <Done>
160 END

MODule:OWAVelength
Command :CALibrate:MODule:OWAVelength <wavelength>

This command sets the optical wavelength for an optical channel calibration. This com-
mand should only be used for modules with an optical channel.

Example 10 OUTPUT 707;":CALIBRATE:MODULE:OWAVELENGTH 1340E–9"
20 END

MODule:STATus?
Query :CALibrate:MODule:STATus?{LMODule | RMODule}

This query returns the status of the module calibration (electrical and optical chan-
nels) and optical calibration (optical channels) as either CALIBRATED or UNCALI-
BRATED. It will return UNKNOWN if the module does not have calibration capability.
Queries to modules with two electrical channels (including TDR modules) will return
the status of module calibration only. Queries to modules with two optical channels will
return the status of the module calibration, followed by the status of optical calibration
of the first channel, followed by the status of the optical calibration of the second chan-
nel.

Returned Format [:CALibrate:MODule:STATus] {<status vertical calibration>,<status optical calibration> | CALIBRATED |
UNCALIBRATED | UNKNOWN} <NL>

7-9

Calibration Commands
MODule:TIME?

MODule:TIME?
Query :CALibrate:MODule:TIME? {LMODule | RMODule | CHANnel <N>}

The query returns the date and time at the last channel module calibration, and the dif-
ference between the current channel temperature and the temperature of the channel
when it was last calibrated. If there is not a module in the selected slot, the message
“Empty Slot” is returned.

<N> An integer, 1 through 4.

Returned Format [:CALibrate:MODule:TIME] <value><NL>
<value> Is in the format: DD MMM YY HH:MM <delta_temp>

<delta_temp> Is the difference between the current temperature and the temperature when the last
calibration was done. For example, <delta_temp> might be:

–5C
10C
–12C

MODule:VERTical
Command :CALibrate:MODule:VERTical {LMODule | RMODule}

This command initiates a module calibration on a selected slot. The specified slot
should be the first slot of a double-wide module.

Example GPIB sequence for module calibration:

10 OUTPUT 707;":CALIBRATE:MODULE:VERTICAL LMODULE" <disconnect all inputs>
20 OUTPUT 707;":CALIBRATE:MODULE:CONTINUE"
30 END

OUTPut
Command :CALibrate:OUTPut <dc_value>

This command sets the dc level of the calibrator signal output through the front-panel
CAL connector.

Example This example puts a dc voltage of 2.0 V on the analyzer Cal connector.

10 OUTPUT 707;":CALIBRATE:OUTPUT 2.0"
20 END

<dc_value> dc level value in volts, adjustable from –2.0 V to +2.0 Vdc.

Query :CALibrate:OUTPut?

This query is for a module calibration only.

7-10

Calibration Commands
PROBe

The query returns the current dc level of the calibrator output.

Returned Format [:CALibrate:OUTPut] <dc_value><NL>
Example This example places the current selection for the dc calibration to be printed in the

string variable, Selection$, then prints the contents of the variable to the controller’s
screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":CALIBRATE:OUTPUT?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

PROBe
Command :CALibrate:PROBe CHANnel<N>

This command starts the probe calibration for the selected channel. It has the same
action as the command :CHANnel<N>:PROBe:CALibrate. For more information about
probe calibration, refer to “Probe Calibration” on page 7-4.

<N> An integer, 1 through 4.

Example The following example starts calibration for Channel 1.

10 OUTPUT 707;":CALibrate:PROBe CHANnel1"
20 END

RECommend?
Firmware Revision Re-
quired

3.0 and above

Query :CALibrate:RECommend? {CHANnel<N>}
The values returned by this query indicate the current calibration recommendations of
the analyzer. There are seven comma-separated integers. A "1" indicates that a cali-
bration is recommended, a 0 indicates that the calibration is either not required or not
possible. These values match the calibration recommendations found in the All Cali-

brations dialog box.

<N> An integer, 1 through 4.

Returned Format [:CALibrate:RECommend] <values><NL>
<values> <Module/Vertical>,

<Mainframe/Horizontal>,
<ChannelN Extinction Ratio>,

All Calibrations Dialog Box

Open the Calibrate menu on the instrument display screen, then choose
All Calibrations to open the All Calibrations dialog box.

7-11

Calibration Commands
SAMPlers

<ChannelN Probe>,
<ChannelN Optical Wavelength1>,
<ChannelN Optical Wavelength2>,
<ChannelN Optical User-defined>

SAMPlers
Command :CALibrate:SAMPlers {DISable | ENABle}

This command enables or disables the samplers in the module.

Example The following example enables sampler calibration for the module.

10 OUTPUT 707;":CALIBRATE:SAMPLERS ENABLE"
20 END

Query :CALibrate:SAMPlers?
The query returns the current calibration enable/disable setting.

Returned Format [:CALibrate:SAMPlers]{DISable | ENABle}<NL>
Example The following example gets the current setting for sampler calibration, stores it in the

variable Sampler$, and prints the contents of the variable to the controller’s screen.

10 DIM Sampler$[50] !Dimension variable
20 OUTPUT 707;":CALIBRATE:SAMPLERS?"
30 ENTER 707;Sampler$
40 PRINT Sampler$
50 END

SDONe?
Query :CALibrate:SDONe?

The CALibrate:SDONe (Step DONe) query will return when the current calibration
step is complete.

The contents of the string returned indicates to the user the next step.

Returned Format [:CALibrate:SDONe] <string><NL>
Example This example places the current selection for the calibration pass/fail status to be

printed in the string variable, Selection$, then prints the contents of the variable to the
controller’s screen.

10 DIM Selection$[80] !Dimension variable
20 OUTPUT 707;":CALIBRATE:SDONE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

7-12

Calibration Commands
SKEW

SKEW
Command :CALibrate:SKEW {CHANnel<N>},<skew_value>

This command sets the channel-to-channel skew factor for a channel. The numerical
argument is a real number in seconds which is added to the current time base position
to shift the position of the channel’s data in time. Use this command to compensate for
differences in the electrical lengths of input paths due to cabling and probes.

N O T E In Jitter Mode, skew adjustments are disabled. Do not use this command Jitter Mode. It
generates a “Settings conflict” error.

<N> An integer, from 1 to 4.

<skew_value> A real number, 0 s to 100 µs

Example This example sets the analyzer channel 1 skew to 0.0001 s.

10 OUTPUT 707;":CALIBRATE:SKEW CHANNEL1,0.1s "
20 END

Query :CALibrate:SKEW? {CHANnel<N>}
The query returns the current skew value.

Returned Format [:CALibrate:SKEW] <skew_value><NL>

SKEW:AUTO
Command CALibrate:SKEW:AUTO

This command sets the horizontal skew of multiple, active channels with the same bit
rate, so that the waveform crossings align with each other. In addition, auto skew opti-
mizes the instrument trigger level. Prior to auto skew, at least one channel must display
a complete eye diagram in order to make the initial bit rate measurement.

N O T E In Jitter Mode, skew adjustments are disabled. Do not use this command Jitter Mode. It
generates a “Settings conflict” error.

Mode NRZ Eye mode only.

Example This example initiates auto skew.

10 OUTPUT 707;":CALIBRATE:SKEW:AUTO "

Auto Skew Uses CGRade:COMPlete

Auto skew uses the current color grade measurement completion criterion (refer to
“CGRade:COMPlete” on page 18-6). If auto skew fails to make the bit rate measurement or deter-
mine the time of the crossing points needed to compute the skew, it may be necessary to increase
the color grade completion criterion. Increasing the value will increase the time for auto skew to
complete.

7-13

Calibration Commands
STATus?

20 END

STATus?
Query :CALibrate:STATus?

This query returns the calibration status of the analyzer. These are nine comma-sepa-
rated integers, with 1 or 0. A "1" indicates calibrated; a "0" indicates uncalibrated.

Returned Format [:CALibrate:STATus] <status><NL>
<status> <Mainframe Calibration Status>,

<Channel1 Module Calibration>, 0,
<Channel2 Module Calibration>, 0,
<Channel3 Module Calibration>, 0,
<Channel4 Module Calibration>, 0
The values that always return “0” are used to make the returned format compatible
with the Agilent 83480A and 54750A.

Calibration Procedure

This is an example of how to do module module calibration.

10 DIM Prompt$[64]
20 OUTPUT 707;":CALIBRATE:MODULE:VERTICAL LMODULE”
30 OUTPUT 707;":CALIBRATE:SDONE?”
40 ENTER 707;Prompt$ <Disconnect everything from left module>
50 OUTPUT 707;":CALIBRATE:CONTINUE”
60 OUTPUT 707;":CALIBRATE:SDONE?”
70 ENTER 707;Prompt$ <Done>

Query for Recommended Calibrations

Use CALibrate:RECommend? to query for recommended calibrations.

7-14

Calibration Commands
STATus?

8

BANDwidth 8-2
DISPlay 8-2
FDEScription? 8-3
FILTer 8-3
FSELect 8-4
OFFSet 8-5
PROBe 8-5
PROBe:CALibrate 8-6
PROBe:SELect 8-6
RANGe 8-7
SCALe 8-8
TDRSkew 8-8
UNITs 8-9
UNITs:ATTenuation 8-9
UNITs:OFFSet 8-9
WAVelength 8-10

Channel Commands

8-2

Channel Commands
BANDwidth

Channel Commands

The CHANnel subsystem commands control all vertical (Y axis) functions of the ana-
lyzer. You may toggle the channel displays on and off with the root level commands
VIEW and BLANk, or with DISPlay.

BANDwidth
Command :CHANnel<N>:BANDwidth {HIGH | MID | LOW}

This command controls the channel bandwidth setting. When HIGH, the bandwidth is
set to the upper bandwidth limit. When LOW, a lower bandwidth setting is selected in
order to minimize broadband noise. For modules with three bandwidths, MID will
select the center bandwidth. See the module section of the online Help for cutoff fre-
quency specifications.

<N> The channel number which represents an integer, 1 to 4. The integer is the slot in
which the channel resides.

Example The following example sets the channel 1 bandwidth to “HIGH”.

10 OUTPUT 707;":CHANNEL1:BANDwidth HIGH"
20 END

Query :CHANnel<N>:BANDwidth?
The query returns the state of the bandwidth for the specified channel.

Returned Format [:CHANnel<N>:BANDwidth] {HIGH | MID | LOW}<NL>
Example The following example places the current setting of the channel bandwidth in the

string variable, Band$, and then prints the contents of the variable to the controller’s
screen.

10 DIM Limit$[50] !Dimension variable
20 OUTPUT 707;":CHANNEL1:BANDwidth?"
30 ENTER 707;Band$
40 PRINT Band$
50 END

DISPlay
Command :CHANnel<N>:DISPlay {{ON | 1} | {OFF | 0}}[,APPend]

This command turns the display of the specified channel on or off.

8-3

Channel Commands
FDEScription?

<N> The channel number is an integer 1 to 4.

APPend This optional parameter is used, in Eye/Mask mode, to turn on additional channels
without turning off any other database signals that are currently on. Without the
APPend parameter, all other database signals in the Eye/Mask mode would be turned
off when turning a channel on.

Example This example sets channel 1 display to on.

10 OUTPUT 707;"CHANNEL1:DISPLAY ON"
20 END

Query :CHANnel<N>:DISPlay?
The query returns the current display condition for the specified channel.

Returned Format [:CHANnel<N>:DISPlay] {1 | 0}<NL>
Example This example places the current setting of the channel 1 display in the variable Display,

then prints the contents of the variable to the controller’s screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;":CHANNEL1:DISPLAY?"
30 ENTER 707;Display
40 PRINT Display
50 END

FDEScription?
Query :CHANnel<N>:FDEScription?

This query returns the number of filters and a brief description of each filter for chan-
nels with one or more internal low-pass filters.

The filter description is the same as the softkey label for the control used to select the
active filter.

<N> The channel number is an integer from 1 to 4. The integer is the slot in which the chan-
nel resides.

Returned Format [:CHANnel<N>:FDEScription]<N><filter1_description>,<filter2_description>, ...
<filterN_description><NL>

<N> number of filters

<filter_description> XXX b/s or XXX b/s:N (depending on the module option)
where: XXX is bit rate of filter; N is filter order

FILTer
Command :CHANnel<N>:FILTer {ON | 1 | OFF | 0}

This command controls an internal low-pass filter, if one is present, in the channel
hardware.

8-4

Channel Commands
FSELect

<N> The channel number is an integer from 1 to 4. The integer is the slot in which the chan-
nel resides.

Example 10 OUTPUT 707;":CHANNEL1:FILTER ON"
20 END

Query :CHANnel<N>:FILTer?
The query returns the filter setting for the specified channel.

Returned Format [:CHANnel<N>:FILTer] {1 | 0}<NL>
Example The following example places the current setting of the filter in the string variable, Fil-

ter$, and then prints the contents of the variable to the controller’s screen.

10 DIM Filter$[50] !Dimension variable
20 OUTPUT 707;":CHANNEL1:FILTER?"
30 ENTER 707;Filter$
40 PRINT Filter$
50 END

FSELect
Command :CHANnel<N>:FSELect FILTer<filter_number>

This command selects which filter is controlled by on/off for channels with more than
one filter selection.

To query for a description of the filters, see the CHANnel:FDEScription query.

<N> The channel number is an integer from 1 to 4. The integer is the slot in which the chan-
nel resides.

<filter_number> The filter number is an integer. In the Channel dialog box, filter number 1 is the first
filter listed in the Filter box.

Example 10 OUTPUT 707;":CHANNEL1:FSELECT FILTER1"
20 END

Query :CHANnel<N>:FSELect?
The query returns the current filter number for the specified channel.

Returned Format [:CHANnel<N>:FSELect]{FILT<filter_number>}<NL>
Example The following example places the current setting of the filter in the string variable, Fil-

ter$, and then prints the contents of the variable to the controller’s screen.

10 DIM Filter$[50] !Dimension variable
20 OUTPUT 707;":CHANNEL1:FSELECT?"
30 ENTER 707;Filter$
40 PRINT Filter$
50 END

Filter State

When you turn the filter on, you can select which channel bandwidth setting you want to use.
When you turn the filter off, the instrument sets the channel bandwidth to its default setting.

8-5

Channel Commands
OFFSet

See Also CHANnel:FDEScription?

OFFSet
Command :CHANnel<N>:OFFSet <offset_value>

This command sets the voltage that is represented at the center of the display for the
selected channel. Offset parameters are probe and vertical scale dependent.

For TDR and TDT applications, when the TDR stimulus is set to differential or common
mode, the instrument will change offset to magnify offset. This command is used to set
the magnify offset as well as the offset.

N O T E In Jitter Mode, channel scale and offset controls are disabled. Do not use this command
Jitter Mode. It generates a “Settings conflict” error.

<N> An integer, from 1 through 4.

<offset _value> Offset value at center screen. Usually expressed in volts, but could be in other mea-
surement units, such as amperes, if you have specified other units using the CHAN-
nel:UNITs command.

Example This example sets the offset for channel 1 to 0.125 in the current measurement units.

10 OUTPUT 707;":CHANNEL1:OFFSET 125E-3"
20 END

Query :CHANnel<N>:OFFSet?
The query returns the current offset value for the specified channel.

Returned Format [CHANnel<N>:OFFSet] <offset value><NL>
Example This example places the offset value of the specified channel in the string variable, Off-

set$, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;"SYSTEM:HEADER OFF"
20 OUTPUT 707;"CHANNEL1:OFFSET?"
30 ENTER 707;Offset
40 PRINT Offset
50 END

PROBe
Command :CHANnel<N>:PROBe <attenuation factor>[,{RATio | DECibel}]

This command sets the channel attenuation factor and units. It provides the equivalent
function of the Attenuation Factor setting under the Setup menu’s Channel command.
The default attenuation factor is 1:1 and the default units are ratio. When the TDR
stimulus is set to differential or common mode, the instrument will change offset to
magnify offset. This command is used to set the magnify offset as well as the offset.

<N> An integer, from 1 to 4.

Query :CHANnel<N>:PROBe?

8-6

Channel Commands
PROBe:CALibrate

Returned Format [:CHANnel<N>:PROBe] <attenuation factor>, {RATio | DECibel}<NL>

PROBe:CALibrate
Command :CHANnel<N>:PROBe:CALibrate

This command starts the probe’s calibration for the selected channel. It has the same
action as the command :CALibrate:PROBe CHANnel<N>. For more information about
probe calibration, refer to “Probe Calibration” on page 7-4.

<N> An integer, from 1 to 4.

Example The following example starts calibration for Channel 1.

10 OUTPUT 707;":CHANNEL1:PROBE:CALIBRATE"
20 END

PROBe:SELect
Command :CHANnel<N>:PROBe:SELect <probe_id>[,<meas_mode>]

This command selects an AutoProbe interface probe used in conjunction with the Agi-
lent N1022A probe adapter. The probes that are currently supported by this command
are the Agilent single-ended/differential 1131A, 1132A, 1134A probes and the single-
ended 1152A, 1156A, 1157A, 1158A probes.

This command is not available for TDR/TDT measurements.

An error condition will occur if an AutoProbe is not connected to a channel

<N> An integer, 1 through 4.

<probe_id> This parameter is used to select the AutoProbe type.
{P1131A | P1132A | P1134A | P1152A | P1156A | P1157A | P1158A}

<meas_mode> This optional parameter is used to set the measurement mode. The default measure-
ment mode is Single ENDed. Use the DIFFerential parameter for the differential
probes to measure differential signals.
{SENDed | DIFFerential}

Example The following example selects the 1134A in differential mode on channel 2.

10 OUTPUT 707;":CHANNEL2:PROBE:SELECT P1134A,DIFFERENTIAL"
20 END

Query :CHANnel<N>:PROBe:SELect?

Using an unspecified probe

If you elect to use an AutoProbe style probe that is not in the supported probe list, select .one of
the probes from the supported list that is closest in type to your unspecified probe.

8-7

Channel Commands
RANGe

This query returns the AutoProbe type that is attached to the specified channel. If the
type of probe that is attached is a passive or not an AutoProbe, an error will be
returned.

Returned Format [:CHANnel<N>:PROBe:SELect] <probe_id>, {SEND | DIFF}<NL>
Example The following example places the current probe type in the string variable, Probe$, and

then prints the contents of the variable to the controller's screen.

10 DIM Probe$[50] !Probe variable
20 OUTPUT 707;":CHANNEL2:PROBE:SELECT?"
30 ENTER 707;Probe$
40 PRINT Probe$
50 END

RANGe
Command :CHANnel<N>:RANGe <range_value>

This command defines the full-scale vertical axis of the selected channel. It sets up
acquisition and display hardware to display the waveform at a given range scale. The
values represent the full-scale deflection factor of the vertical axis in volts. These val-
ues change as the probe attenuation factor is changed.

For TDR and TDT applications, when the TDR stimulus is set to differential or common
mode, or when OHM, REFLect, or GAIN units are selected, the instrument will change
scale to magnify scale. This command is used to set the magnify range as well as the
range.

N O T E In Jitter Mode, channel scale and offset controls are disabled. Do not use this command
Jitter Mode. It generates a “Settings conflict” error.

<N> An integer, 1 through 4.

<range_value> Full-scale voltage of the specified channel number.

Example This example sets the full-scale range for channel 1 to 500 mV.

10 OUTPUT 707;":CHANNEL1:RANGE 500E-3"
20 END

Query :CHANnel<N>:RANGe?
The query returns the current full-scale vertical axis setting for the selected channel.

Returned Format [:CHANnel<N>:RANGe]<range value><NL>
Example This example places the current range value in the number variable, Setting, then

prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;":CHANNEL1:RANGE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

8-8

Channel Commands
SCALe

SCALe
Command :CHANnel<N>:SCALe <scale_value>

This command sets the vertical scale, or units per division, of the selected channel.
This command is the same as the front-panel channel scale.

For TDR and TDT applications, when the TDR stimulus is set to differential or common
mode, the instrument will change scale to magnify scale. This command is used to set
the magnify scale as well as the scale.

N O T E In Jitter Mode, channel scale and offset controls are disabled. Do not use this command
Jitter Mode. It generates a “Settings conflict” error.

<N> An integer, 1 through 4.

<scale_value> Vertical scale of the channel in units per division.

Example This example sets the scale value for channel 1 to 500 mV.

10 OUTPUT 707;":CHANNEL1:SCALE 500E-3"
20 END

Query :CHANnel<N>:SCALe?
The query returns the current scale setting for the specified channel.

Returned Format [:CHANnel<N>:SCALe] <scale value><NL>
Example This example places the current scale value in the number variable, Setting, then prints

the contents of the variable to the controller’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":CHANNEL1:SCALE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

TDRSkew
Command :CHANnel<N>:TDRSkew <percent> [%]

This command sets the TDR skew for the given channel. The TDR skew control moves
the TDR step relative to the trigger position. The control may be set from –100 to 100
percent of the allowable range. This command is only applicable to TDR channels.

Command Requirements

This command is enabled only if a stimulus is currently active and if the module has differential
capability.

8-9

Channel Commands
UNITs

<N> An integer, 1 through 4, indicating the slot in which the channel resides, followed by an
optional A or B identifying which of two possible channels in the slot is being refer-
enced.

<percent> A number between –100 and 100, used to set the step position.

Example The following example sets the TDR skew for channel 1 to 20%.

10 OUTPUT 707;":CHANNEL1:TDRSKEW 20"
20 END

Query :CHANnel<N>:TDRSkew?
The query returns the current TDR skew setting for the specified channel.It returns
the TDR skew value in percent of allowable range from –100 to 100 percent. This com-
mand is only applicable to TDR channels. The returned format is a real number.

Returned Format [:CHANnel<N>:TDRSkew] <value><NL>

UNITs
Command :CHANnel<N>:UNITs {VOLT | OHM |AMPere | REFLect | WATT | UNKNown}

This command sets the transducer units in Oscilloscope and Eye/Mask modes. In TDR/
TDT mode this command sets the channel units (VOLT, OHM, REFLect).

<N> An integer, from 1 to 4.

Query :CHANnel<N>:UNITs?
Returned Format [:CHANnel<N>:UNITs] {VOLT | OHM | REFLect | AMPere | WATT | UNKNown}<NL>

UNITs:ATTenuation
Command :CHANnel<N>:UNITs:ATTenuation <attenuation>

This command sets the transducer conversion factor. It provides the equivalent func-
tion of the Transducer Conversion Factors Gain setting under the Setup menu’s Chan-
nel command. This command is disabled for TDR channels and destinations channels
for TDR/TDT measurements.

<N> An integer, from 1 to 4.

Query :CHANnel<N>:UNITs:ATTenuation?
Returned Format [:CHANnel<N>:UNITs:ATTenuation] <attenuation><NL>

UNITs:OFFSet
Command :CHANnel<N>:UNITs:OFFSet <offset>

This command sets the transducer offset. It provides the equivalent function of the
Transducer Conversion Factors Offset setting under the Setup menu’s Channel com-
mand. This command is disabled for TDR channels and destinations channels for TDR/
TDT measurements.

8-10

Channel Commands
WAVelength

<N> An integer, from 1 to 4.

Query :CHANnel<N>:UNITs:OFFSet?
Returned Format [:CHANnel<N>:UNITs:OFFSet] <offset><NL>

WAVelength
Command :CHANnel<N>:WAVelength {WAVelength1 | WAVelength2 | USER}

This command sets the wavelength selection for optical channels. For modules that
only support one factory-defined wavelength, the module will have one factory calibra-
tion; all other optical modules will have two. Invoke these calibrations using WAV1 or
WAV2. One user-defined wavelength may also be defined via the Channel Calibrate
menu. The USER selection is only valid if this user-defined calibration has been per-
formed. The calibration will request the wavelength that the USER choice corresponds
to.

This command will also recognize W1310 as an equivalent for WAVelength1 and W1550
for WAVelength2, for compatibility with the Agilent 83480A/54750A.

<N> An integer, from 1 to 4.

Query :CHANnel<N>:WAVelength?
The query returns the currently selected wavelength for the channel.

Returned Format [:CHANnel<N>:WAVelength] {WAV1 | WAV2 | USER}<NL>
Example 10 OUTPUT 707;":SYSTEM:HEADER OFF” !Response headers off

20 OUTPUT 707;":CHANnel1:WAVELENGTH?"
30 ENTER 707;Setting
40 PRINT Setting
50 END UNITs

9

INPut 9-2
LBANdwidth 9-2
LOCKed? 9-3
RATE 9-3
SPResent? 9-5

Clock Recovery Commands

9-2

Clock Recovery Commands
INPut

Clock Recovery Commands

The Clock RECovery (CREC) subsystem commands control the clock recovery mod-
ules. This includes setting data rates, as well as querying locked status and signal
present conditions.

INPut
Firmware Revision Re-
quired

3.10 and above

N O T E This command applies only to 83495A modules.

Command :CRECovery{1 | 3}:INPut{ELECtrical | OPTical}
Selects the clock recovery input on 83495A modules. The optical input is the default
input setting.

Example The following example selects the electrical input.

10 OUTPUT 707;":CRECOVERY1:INPUT:ELECTRICAL"

Query :CRECovery{1 | 3}:INPut?

Returned Format :CRECovery{1 | 3}:INPut{ELEC | OPT}<NL>

Example 10 OUTPUT 707;":CRECOVERY1:INPUT?"

LBANdwidth
Firmware Revision Re-
quired

3.10 and above

N O T E This command applies only to 83495A modules.

Command :CRECovery{1 | 3}:LBANdwidth {BW4MHZ | BW30KHZ}
Selects the loop bandwidth on 83495A modules. The default loop bandwidth setting is
4 MHz.

Example The following example selects the loop bandwidth.

10 OUTPUT 707;":CRECOVERY1:LBANDWIDTH BW4MHZ"
Query :CRECovery{1 | 3}:LBANDWIDTH?

9-3

Clock Recovery Commands
LOCKed?

Returned Format :CRECovery{1 | 3}:LBANDWIDTH {BW4MHZ | BW30KHZ}<NL>

Example 10 OUTPUT 707;":CRECOVERY1:LBANDWIDTH?"

LOCKed?
Query :CRECovery{1 | 3}:LOCKed?

The query returns the locked or triggered status of the clock recovery module.

Locked or triggered status returns 1, unlocked or trigger loss status returns 0. With all
83491/2/3/4/5A modules, when a clock rate is selected, unlocked status indicates clock
recovery cannot be established and trigger output to the mainframe is disabled. In
bypass mode (trigger on data), status is always 0 and trigger output to the mainframe
is not disabled. For 83495A modules, status is still locked or unlocked depending on
clock recovery state.

Returned Format [:CRECovery{1 | 3}:LOCK] {1 | 0}<NL>

Example The following example checks the locked status of module in the left slot and places
the result in the string variable, Locked$. Then the program prints the contents of the
variable to the controller’s screen.

10 DIM Locked$[50]
20 OUTPUT 707;":CRECOVERY1:LOCKED?"
30 ENTER 707;Locked$
40 PRINT Locked$
50 END

RATE
Command :CRECovery{1 | 3}:RATE {TOData | R155 | R622 | R1062 | R1250 | R2125 | R2488 | R2500 | R2666 | R9953

| R10312 | R10664 | R10709 | RANGE10G}
This command sets the clock recovery module data rate based on module slot position:
left slot (1), right slot (3). The rates are: Trigger On Data (TOData), Rate 155, Rate
622, Rate 1062, Rate 1250, Rate 2125, Rate 2488, Rate 2500, Rate 2666, Rate 9953,
Rate 10312, Rate 10664, Rate 10709 in Mb/s, and a Range of 9.953 Gb/s to 11.32 Gb/s.
Rate parameters are nominal and reflect front panel labels and not actual data rates.

As noted in the table below, not all modules support the same rates.

Note

After setting a rate, locked or triggered status should be verified before executing any signal
dependent GPIB commands, such as autoscale, or any measurements. This is required to allow the
module/instrument enough time to establish a trigger. This can be achieved by querying locked
status until locked or generating an event on the module lock.

9-4

Clock Recovery Commands
RATE

Example This example sets the module in the right slot to a data rate of 2488 Mb/s.

10 OUTPUT 707;":CRECOVERY3:RATE R2488"
20 END

Query :CRECovery{1 | 3}:RATE?
This query returns the current data rate of the clock recovery module in the specified
module position.

Returned Format [:CRECovery{1 | 3}:RATE] {TOData | R155 | R622 | R1062 | R1250 | R2125 | R2488 |
R2500 | R2666 | R9953 | R10312 | R10664 | R10709 | RANGE10G}<NL>

Example The following example checks the current data rate of the module in the left slot and
places the result in the string variable, Rate$. Then the program prints the contents of
the variable to the controller’s screen.

10 DIM Rate$[50]
20 OUTPUT 707;":CRECOVERY1:RATE?"
30 ENTER 707;Rate$

Data Rates versus Model

Rate
Parameter Rate (Mb/s)

Module Model Number

83
49

1

83
49

2

83
49

3

83
49

4

83
49

4
O

pt
io

n
10

3

83
49

4
O

pt
io

n
10

6

83
49

4
O

pt
io

n
10

7

83
49

5
O

pt
io

n
10

0
&

 2
00

O
pt

io
n

10
1

&
 2

00

TOData — X X X X X X X X

R155 155.52 X X X X X X X

R622 622.08 X X X X X X X

R1062 1062.50 X X

R1250 1250.00 X X X

R2125 2125.00 X X

R2488 2488.32 X X X X X X X

R2500 2500.00 X X X

R2666 2666.06 X X

R9953 9953.28 X X

R10312 10312.50 X X

R10664 10664.23 X X

R10709 10709,225 X X

RANGE10G 9.953 Gb/s–
11.32 Gb/s

X

9-5

Clock Recovery Commands
SPResent?

40 PRINT Rate$
50 END

SPResent?

N O T E This query does not apply to 83495A modules.

Query :CRECovery{1 | 3}:SPResent? {RECeiver1 | RECeiver2}
This query returns the status of whether the specified receiver detects an optical signal
(Signal PResent). RECeiver2 is used for long wavelengths and RECeiver1 is used for
short wavelengths. For electrical clock recovery modules, 83491A, the signal present
flags will always return false.

Returned Format [:CRECovery{1 | 3}:SPResent] {RECeiver1 | RECeiver2}, {1 | 0}<NL>

Example The following example checks if there is a signal present on receiver two of the module
in the right slot and places the result in the string variable, Signal2$. Then the program
prints the contents of the variable to the controller’s screen.

10 DIM Signal2$[50]
20 OUTPUT 707;":CRECOVERY3:SPRESENT? RECEIVER2"
30 ENTER 707;Signal2$
40 PRINT Signal2$
50 END

Signal Present Return Status vs. Receiver Number

Module Model
Receiver 1
Short Wavelength

Receiver 2
Long Wavelength

83491 0 0

83492a

a. Only one receiver at a time can have a signal present.

1/0 1/0

83493 0 1/0

83494 0 1/0

83494 Option 103 0 1/0

83494 Option 106 0 1/0

83494 Option 107 0 1/0

10

CDIRectory 10-2
DELete 10-3
DIRectory? 10-3
LOAD 10-4
MDIRectory 10-5
PWD? 10-5
SIMage 10-5
STORe 10-6

Disk Commands

10-2

Disk Commands
CDIRectory

Disk Commands

The DISK subsystem commands perform the disk operations as defined in the Disk
menu. This allows storage and retrieval of waveforms and setups, remote screen cap-
tures, as well as formatting the disk. Some commands in this subsystem operate only
on files and directories on “D:\User Files” (C: on 86100A/B) or on any external drive or
mapped network drive. These instances are noted in the command section. When spec-
ifying a file name, you must enclose it in quotation marks.

CDIRectory

Command :DISK:CDIRectory ["<directory>" | {CGRade | LSUMmaries | ROOT | SETups | SIMages | SMASks | TDRCal
| UMASks | WAVeforms}]
This command changes the present working directory (PWD) to the designated direc-
tory name. If an error occurs, the requested directory does not exist. You can view the
error with the :SYSTem:ERRor? [{NUMBer | STRing}] query.

The PWD is set to “D:\User Files” when the instrument is powered on. The PWD is
combined with relative file specifications to produce absolute path specifications. For
example, if the PWD is set to “D:\User Files\My Setup”, the command :DISK:STORE
SETUP, “.\setup1.set” will cause the current setup to be stored in the file “D:\User
Files\My Setup\setup1.set”.

<directory> A character-quoted ASCII string, which can include the subdirectory designation. You
must separate the directory name and any subdirectories with a backslash (\).

ROOT This parameter changes the working directory to “D:\User Files”.

Example 10 OUTPUT 707;":DISK:CDIRECTORY ""D:\USER FILES\DATA"""
20 END

This command operates only on files and directories on “D:\User Files” (C: on 86100A/B) or on any
external drive or mapped network drive.

10-3

Disk Commands
DELete

DELete

Command :DISK:DELete "<file_name>"
This command deletes a file from the disk. If no path is specified, it searches for the file
using the present working directory. An error is displayed on the analyzer screen if the
requested file does not exist. The file
“D:\User Files” cannot be deleted.

<file_name> A character-quoted ASCII string which can include subdirectories with the name of the
file.

Example 10 OUTPUT 707;":DISK:CDIRECTORY SETUPS"
20 OUTPUT 707;":DISK:DELETE ""FILE1.SET"""
30 END

DIRectory?
Query :DISK:DIRectory? ["<directory>" | {CGRade | ROOT | LSUMmaries | SETups | SIMages | SMASks | TDRCal

| UMASks | WAVeforms}]
This query returns the requested directory listing. The directory may be specified as a
string, such as "D:\User Files\waveforms", or as a parameter. If no parameter is used, a
listing of the present working directory is returned.

<directory> The list of file names and directories.

Returned Format [:DISK:DIRectory]<N><NL><directory><NL>
<N> The specifier that is returned before the directory listing, indicating the number of

lines in the listing.

<directory> The list of filenames and directories. Each line is separated by a <NL>.

Example This example displays a number, then displays a list of files and directories in the cur-
rent directory. The number indicates the number of lines in the listing.

10 DIM A$[80]
20 INTEGER Num_of_lines
30 OUTPUT 707;":DISK:DIR?"

When CDIR is not allowed

You cannot execute the command CDIR "A:\" on 86100A/B instruments. Also, you cannot execute the
command CDIR "C:\" or CDIR “D:\” (86100C). If you attempt to execute CDIR "C:\" or CDIR “D:\”
(86100C), the present working directory (PWD) is not changed. The directory specified must be
below “D:\User Files\”.

This command operates only on files and directories on “D:\User Files” (C: on 86100A/B) or on any
external drive or mapped network drive.

10-4

Disk Commands
LOAD

40 ENTER 707;Num_of_lines
50 PRINT Num_of_lines
60 FOR I=1 TO Num_of_lines
70 ENTER 707;A$
80 PRINT A$
90 NEXT I
100 END

LOAD

Command :DISK:LOAD "<file_name>"[,<destination>[,APPend]
This command restores a setup, waveform, jitter data, or TDR/TDT calibration from
the disk. The type of file is determined by the file name suffix if one is present, or by
the destination field if one is not present. If a destination is specified, it takes prece-
dence over the file name suffix. You can load .wfm, .txt, .cgs, .msk, .pcm, .set, .jd, and
.tdr file types. The TDRTDT option is a file type choice used to load TDR/TDT calibra-
tion values into the instrument. For more information on loading files, see “File Names
and Types” on page 1-8, and “File Locations” on page 1-10.

<file_name> The filename, with a extension: .wfm, .txt, .cgs, .msk, .pcm, .set, .jd, or .tdr as a suffix
after the filename. If no file suffix is specified, the default is .wfm.

The default directory for the file type is assumed, or you can specify the entire path.
For example, you can load the standard setup file "setup0.set" using the command:

:DISK:LOAD "D:\User Files\Setups\setup0.set",setup
The default destination for .txt and .wfm files is WMEMory1.

<destination> {CGMemory | MASK | WMEMory<N> | SETup | JDMemory | TDRTDT}

N O T E Do not use this command with a <destination> specified other than SETup and
JDMemory in Jitter Mode. Using other <destination> arguments generate a “Settings
conflict” error.

APPend This optional parameter is used to turn on additional channels in Eye/Mask mode with-
out turning off any channel(s) that are currently on. Without the APPend parameter,
all other database signals would be turned off when loading .cgs file.

<N> An integer from 1 to 4.

Firmware Revision Re-
quired

4.00 and above (86100C instruments) for jitter data memory argument.

Example 10 OUTPUT 707;":DISK:LOAD ""FILE1.WFM"",WMEM1"
20 END

This command operates only on files and directories on “D:\User Files” (C: on 86100A/B) or on any
external drive or mapped network drive.

10-5

Disk Commands
MDIRectory

MDIRectory

Command :DISK:MDIRectory "<directory>"
This command creates a directory in the present working directory, with the desig-
nated directory name. An error is displayed if the requested path does not exist.

<directory> A character-quoted ASCII string which can include subdirectories. You must separate
the directory name and any subdirectories with a backslash (\).

Example 10 OUTPUT 707;":DISK:MDIRECTORY ""CPROGRAMS"""
20 END

PWD?
Query :DISK:PWD?

This query returns the name of the present working directory (including the full path).

Returned Format [:DISK:PWD] <present_working_directory><NL>
Example 10 DIM Wdir$[200]

20 OUTPUT 707;":DISK:PWD?"
30 ENTER 707; Wdir$
40 PRINT Wdir$
50 END

SIMage

Command :DISK:SIMage "<filename>"[,<area> [,<image>]]
This command remotely captures images of the screen.

<filename> If a filename is specified without a path, the default path will be
D:\User Files\screen images. The default file type is a bitmap (.bmp).

The filename field encodes the network path of the directory in which the file will be
saved, as well as the file format that will be used. The following is a list of valid filena-
mes.

This command operates only on files and directories on “D:\User Files” (C: on 86100A/B) or on any
external drive or mapped network drive.

This command operates only on files and directories on “D:\User Files” (C: on 86100A/B) or on any
external drive or mapped network drive.

10-6

Disk Commands
STORe

The following graphics formats are available by specifying a file extension: PCX files
(.pcx), EPS files (.eps), Postscript files (.ps), JPEG files (.jpg), TIFF files (.tif), and
GIF files (.gif).

<area> {SCReen | GRATicule}
This parameter selects which data from the screen is to be saved to disk. When you
select GRATicule, only the graticule area of the display screen is saved; the entire
screen is saved if you select SCReen. The default setting is SCReen.

<image> {NORMal | INVert | MONochrome}
This parameter specifies which color scheme is to be used during the screen save oper-
ation. The default value is INVert; this scheme saves the waveforms over a white back-
ground.

STORe

Command :DISK:STORe <source>,"<file_name>"[,<format>]

Valid Filenames

Filename File Saved in Directory...

“Test1.gif” D:\User Files\Screen Images\

“A:test2.pcx” A:\

“.\screen2.jpg” File saved in the present working directory, set
with the command :DISK:CDIR.

“\\computer-ID\d$\test3.bmp” File saved in drive D: of computer “computer-ID”,
provided all permissions are set properly.

“E:test4.eps” File saved in the instrument’s drive E:, that could
be mapped to any disk in the network.

Note

For .gif and .tif file formats, this instrument uses LZW compression/decompression
licensed under U.S. patent No 4,558,302 and foreign counterparts. End user should not
modify, copy, or distribute LZW compression/decompression capability.

For .jpg file format, this instrument uses the .jpg software written by the Independent JPEG Group.

This command operates only on files and directories on “D:\User Files” (C: on 86100A/B) or on any
external drive or mapped network drive.

10-7

Disk Commands
STORe

This command stores a setup, waveform, jitter data, or TDR response to the disk. The
file name does not include a suffix. The suffix is supplied by the instrument depending
on the source and file format specified. The TDRTDT option is a file type choice used
to store the instrument’s TDR/TDT calibration values. For more information on storing
files, see “File Names and Types” on page 1-8, and “File Locations” on page 1-10.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | SETup | RESPonse<N> | CGRade | JDMemory | JDSource
| TDRTDT}
If a CGRade source has not been selected, CGRade defaults to the lowest valid data-
base available. To set the CGRade source, use the
:WAVeform:SOURce:CGRade command.

N O T E In Jitter Mode, this command generates a “Settings conflict” error if sources other than
SETup and JDMemory are specified.

<N> With the <source> argument, <N> represents an integer from 1 to 4, which identifies
the channel, function, TDR response or waveform memory number.

<file_name> Name of the file, with a maximum of 254 characters (including the path name, if used).
The file name assumes the present working directory if a path does not precede the file
name.

<format> for Waveforms {INTernal | TEXT {,<YVALues> | <VERBose>}}

Include <format> when the <source> argument is WMEMory. The default is INTernal.
In TEXT mode, y values may be specified so that only the y values are stored. VERBose
is the default in which y values and the waveform preamble are stored. Only waveforms
of 128K or less may be written to disk in the TEXT formats. See Chapter 22, “Waveform
Commands” for information on converting data to values.

<format> for Jitter Data {INTernal | CSV}

Include <format> when the <source> argument is JDMemory. The CSV argument
selects data to be saved as comma separated values in a text file. This text file can be
opened in text editors, spreadsheet applications, and word processors. The default
argument is INTernal. See Chapter 22, “Waveform Commands” for information on con-
verting data to values.

Firmware Revision Re-
quired

4.00 and above (86100C instruments) for jitter data memory argument.

Example 10 OUTPUT 707;":DISK:STORE SET,""FILE1"""
20 END

10-8

Disk Commands
STORe

11

CGRade:LEVels? 11-2
CONNect 11-2
DATA? 11-3
DCOLor (Default COLor) 11-3
GRATicule 11-3
JITTer:GRAPh 11-4
JITTer:HISTogram:YSCale 11-5
JITTer:LAYout 11-5
LABel 11-5
LABel:DALL 11-6
PERSistence 11-6
RRATe 11-7
SCOLor 11-8
SSAVer 11-9

Display Commands

11-2

Display Commands
CGRade:LEVels?

Display Commands

The DISPlay subsystem controls the display of data, markers, text, graticules, and the
use of color. You select the display mode using the ACQuire:TYPE command. Select the
number of averages using ACQuire:COUNt.

CGRade:LEVels?
Query :DISPlay:CGRade:LEVels? [CHANnel<N> | FUNCtion<N> | CGMemory]

This query returns the range of hits represented by each color for the specified source.
If no source is specified, the values for the first database signals turned on is returned.
Fourteen values are returned, representing the minimum and maximum count for each
of seven colors. The values are returned in the following order:

• Greatest intensity color minimum
• Greatest intensity color maximum
• Next greatest intensity color minimum
• Next greatest intensity color maximum
•
• Least intensity color minimum
• Least intensity color maximum

Returned Format [:DISPlay:CGRade:LEVels] <color format><NL>
<color format> <intensity color min / max> is an integer value from 0 to 63,488.

Example The following example gets the range of hits represented by each color and prints it on
the controller screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:CGRADE:LEVELS?"
30 ENTER 707;Cgrade$
40 PRINT Cgrade$
50 END

CONNect
Command :DISPlay:CONNect {{ON | 1}|{OFF | 0}}

11-3

Display Commands
DATA?

When enabled, :DISPlay:CONNect draws a line between consecutive waveform data
points. This is also known as linear interpolation. This command has no effect on color
grade or gray scale displays.

Example This example turns on the connect-the-dots feature.

10 OUTPUT 707;":DISPLAY:CONNECT ON"
20 END

Query :DISPlay:CONNect?
The query returns the status of the connect-the-dots feature.

Returned Format [:DISPlay:CONNect] {ON | OFF}<NL>

DATA?
Query :DISPlay:DATA? [<format>[,<screen_mode> [,<inversion>]]]

The query returns information about the captured data. If no options to the query are
specified, the default selections are PCX file type, SCReen mode, and inversion set to
INVert.

<format> The file format: BMP | PCX | EPS | PS | GIF | TIF | JPG.

<screen_mode> The display setting: SCReen | GRATicule.

<inversion> The inversion of the displayed file: NORMal | INVert | MONochrome.

Returned Format [:DISPlay:DATA] <binary_block_data><NL>
<binary_block_data> Data in the IEEE 488.2 definite block format.

DCOLor (Default COLor)
Command :DISPlay:DCOLor

This command (Default COLor) resets the screen colors to the predefined factory
default colors. It also resets the grid intensity.

Example This example sends the DCOLor command.

10 OUTPUT 707;":DISPLAY:DCOLOR"
20 END

GRATicule
Commands :DISPlay:GRATicule {GRID|FRAMe}

:DISPlay:GRATicule:INTensity <intensity_value>
These commands select the type of graticule that is displayed. 86100A analyzers have a
10-by-8 (unit) display graticule grid that you can turn on or off. When the grid is on, a
grid line is place on each vertical and horizontal division. When it is off, a frame with tic
marks surrounds the graticule edges.

<intensity_value> A number from 0 to 100, indicating the percentage of display intensity.

11-4

Display Commands
JITTer:GRAPh

You can dim the grid's intensity or turn the grid off to better view waveforms that might
be obscured by the graticule lines. Otherwise, you can use the grid to estimate wave-
form measurements such as amplitude and period.

When printing, the grid intensity control doesn't affect the hardcopy. To remove the
grid from a printed hardcopy, you must turn off the grid before printing.

Example This example sets up the analyzer's display background with a frame that is separated
into major and minor divisions.

10 OUTPUT 707;":DISPLAY:GRATICULE FRAME"
20 END

Queries :DISPlay:GRATicule?
:DISPlay:GRATicule:INTensity?
The queries return the type of graticule currently displayed, or the intensity, depend-
ing on the query you request.

Returned Format [:DISPlay:GRATicule] {GRID|FRAMe}<NL>
[:DISPlay:GRATicule:INTensity] <value><NL>

Example This example places the current display graticule setting in the string variable, Set-
ting$, then prints the contents of the variable to the controller's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:GRATICULE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

JITTer:GRAPh
Command :DISPlay:JITTer:GRAPh {graph}[,{graph}[,{graph}[,{graph}]]]

This command turns on the specified graphs. From one to four graphs may be speci-
fied, regardless of the current graph layout. The graphs will be selected in order from
last to first. The graph specified by the first parameter will be the one displayed on sin-
gle-graph layout, on top for split layout, and in the upper left corner for quad layout.

graph {CDDJhist | CTJHist | DDJHist | DDJVsbit | RJPJhist | TJHist}
Mode Jitter mode.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example 10 OUTPUT 707; ":DISPlay:JITTer:GRAPh TJHist"
20 END

Query :DISPlay:JITTer:GRAPh?
Returns the current setting for jitter mode graph display.

Returned Format [:DISPlay:JITTer:GRAPh?<NL>

11-5

Display Commands
JITTer:HISTogram:YSCale

This query returns a list of the four graphs that will be displayed on quad graph layout,
regardless of the current layout setting. The returned values are comma-separated
and listed in the order that they were turned on. The first value is the most recently
selected graph. The possible return values are RJPJ, BERB, DDJH, TJH, CTJH, CDDJ,
and DDJV.

JITTer:HISTogram:YSCale
Command :DISPlay:JITTer:HISTogram:YSCale {LINear | LOGarithmic}

This command specifies a linear or lagarithmic vertical scale for the jitter histogram.

Mode Jitter mode.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example 10 OUTPUT 707; ":DISPlay:JITTer:HISTogram:YSCale LINear"
20 END

Query :DISPlay:JITTer:HISTogram:YSCale?
Returned Format Returns the current vertical scale setting.

JITTer:LAYout
Command :DISPlay:JITTer:LAYout {SINGle|SPLit|QUAD}

This command sets the number of graphs displayed when in jitter mode. SINGle speci-
fied one graph, SPLit specifies two graphs and QUAD specifies four graphs.

Mode Jitter mode.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example 10 OUTPUT 707; ":DISPlay:JITTer:LAYout SPLit"
20 END

Query :DISPlay:JITTer: LAYout?
Returned Format Returns the current setting for jitter mode graph layout.

LABel
Command :DISPlay:LABel “<string_argument>” [,<row>[,<column>[,<text_color>[,<background>]]]]

This command allows you to place a label on the graticule area of the display. The oper-
ator should periodically clear the labels using the LABel:DALL command.

<string_argument> Any series of ASCII characters enclosed in quotation marks.

11-6

Display Commands
LABel:DALL

<row> 0 to 12, where 0 is the top row and the default

<column> 0 to 61, where 0 is the left column and the default

<text_color> {CHANnel<N> | WHITe} Default is WHITe

<background> {OPAQue | TRANsparent} Default is TRANsparent

Example This example places a label on the upper left corner of the graticule.

10 OUTPUT 707;":DISPLAY:LABEL""This is a label"""
20 END

LABel:DALL
Command :DISPlay:LABel:DALL

This command deletes all labels.

Example This example deletes all labels.

10 OUTPUT 707;":DISPLAY:LABEL:DALL"
20 END

PERSistence
Command :DISPlay:PERSistence {MINimum | INFinite | <persistence_value> | CGRade | GSCale}

This command sets the display persistence. The parameter for this command can be
either MINimum (zero persistence), INFinite, or a real number from 0.1 to 40, repre-
senting the persistence in seconds, with one digit resolution, color grade, or gray scale.

<persistence_value> A real number, 0.1 to 40, representing the persistence in seconds.

Mode Refer to the following table for CGRade and GSCale arguments.

Persistence Value in Seconds Resolution (Step Size)

0.1 - 0.9 0.1s steps

1 - 10 1s steps

10 - 40 10s steps

Mode
Persistence

Minimum Infinite Variable Color Grade Gray Scale

Eye/Mask X X

11-7

Display Commands
RRATe

Example This example sets the persistence to infinite.

10 OUTPUT 707;":DISPLAY:PERSISTENCE INFINITE"
20 END

Query :DISPlay:PERSistence?
The query returns the current persistence value.

Returned Format [:DISPlay:PERSistence] {MINimum | INFinite | <value> | CGRade | GSCale}<NL>
Example This example places the current persistence setting in the string variable, Setting$,

then prints the contents of the variable to the controller's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:PERSISTENCE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

RRATe
Command :DISPlay:RRATe <refresh_rate>

This command sets the display refresh rate.

<refresh_rate> The refresh rate sets the refresh time in seconds. The minimum value is .01seconds,
and the maximum value is 3600 seconds.

Example This example sets the display refresh rate to 3 seconds.

10 OUTPUT 707;":DISPlay:RRATe 3"
20 END

Query :DISPlay:RRATe?
The query returns the display refresh rate.

Returned Format [:DISPlay:RRATe] <refresh_rate> <NL>
Example This example places the current display refresh rate in the string array setting.

10 DIM RRATE$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:RRATE? "
30 ENTER 707;RRATE$
40 PRINT RRATE$
50 END

write_IO (“:DISPlay:RRATe?”);
read_IO (Setting, SETTING_SIZE);

TDR/TDT X X X

Oscilloscope X X X X X

Mode
Persistence

Minimum Infinite Variable Color Grade Gray Scale

11-8

Display Commands
SCOLor

SCOLor
Command :DISPlay:SCOLor <color_name>, <hue>, <saturation>, <luminosity>

The DISPlay:SCOLor command sets the color of the specified display element and
restores the colors to their factory settings. The display elements are described in
Table 11-1 on page 11-8.

<color_name> {CGRade1 | CGRADE2 | CGRADE3 | CGRADE4 | CGRADE5 | CGRADE6 | CGRade7 | CHANnel1 | CHANnel2
| CHANnel3 | CHANnel4 | GRID | MARGin | MARKers | MASK | MEASurements | WBACkgrnd | WOVerlap
| WMEMories | WINText | WINBackgrnd}

Table 11-1. Color Names

Color Name Definition

CGRADE1 First range of pixel counts for the color grade persistence display

CGRADE2 Second range of pixel counts for the color grade persistence display

CGRADE3 Third range of pixel counts for the color grade persistence display

CGRADE4 Fourth range of pixel counts for the color grade persistence display

CGRADE5 Fifth range of pixel counts for the color grade persistence display

CGRADE6 Sixth range of pixel counts for the color grade persistence display

CGRADE7 Seventh range of pixel counts for the color grade persistence display

CHANnel1 Channel 1 waveform display element.

CHANnel2 Channel 2 waveform display element.

CHANnel3 Channel 3 waveform display element.

CHANnel4 Channel 4 waveform display element.

GRID Display element for the grid inside the waveform viewing area.

MARGin Display element for the margins.

MARKers Display element for the markers.

MASK Display element for the masks.

MEASurements Display element for the measurements text.

WBACkgrnd Display element for the waveform viewing area’s background.

WOVerlap Display element for waveforms when they overlap each other.

WMEMories Display element for waveform memories.

WINText Display element used in dialog box controls and pull-down menus.

WINBackgrnd Display element for the background color used in dialog boxes and buttons.

11-9

Display Commands
SSAVer

<hue> The hue control sets the color of the chosen display element. As hue is increased from
0%, the color changes from red, to yellow, to green, to blue, to purple, then back to red
again at 100% hue. For color examples, see the sample color settings table in the
86100A on-line help file. Pure red is 100%, pure blue is 67%, and pure green is 33%.

<saturation> The saturation control sets the color purity of the chosen display element. The satura-
tion of a color is the purity of a color or the absence of white. A 100% saturated color
has no white component. A 0% saturated color is pure white.

<luminosity> The luminosity control sets the color brightness of the chosen display element. A 100%
luminosity is the maximum color brightness. A 0% luminosity is pure black.

Example This example sets the hue to 50, the saturation to 70, and the luminosity to 90 for the
markers.

10 OUTPUT 707;":DISPLAY:SCOLOR MARKERS,50,70,90"
20 END

Query :DISPlay:SCOLor? <color_name>
The query returns the hue, saturation, and luminosity for the specified color.

Returned Format [:DISPlay:SCOLor] <color_name>, <hue>, <saturation>, <luminosity><NL>
Example This example places the current settings for the graticule color in the string variable,

Setting$, then prints the contents of the variable to the controller's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":DISPLAY:SCOLOR? GRID"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

SSAVer
Commands :DISPlay:SSAVer {DISabled|ENABled}

:DISPlay:SSAVer:AAFTer <time>
These commands let you disable or enable the analyzer screen saver, and specify a time
before the screen saver turns on.

N O T E These commands are not supported in the 86100C. The 86100C will always be set in the
disable mode. Instead, use and control the screen saver from the operating system.

<time> An integer; either 2, 3, 4, 5, 6, 7, or 8. The time value specifies the amount of time, in
hours, that must pass before the screen saver will turn on.

Example This example enables the analyzer screen saver.

10 OUTPUT 707;":DISPLAY:SSAVER ENABLED"
20 OUTPUT 707;":DISPLAY:SSAVER:AAFT 4"
30 END

Queries :DISPlay:SSAVer?
:DISPlay:SSAVer:AAFTer?
The queries return the state of the screen saver.

Returned Format [:DISPlay:SSAVer] {DISabled|ENABled}<NL>
[:DISPlay:SSAVer:AAFTer] <time><NL>

12

DISPlay 12-2
FUNCtion<N>? 12-3
HORizontal 12-3
HORizontal:POSition 12-4
HORizontal:RANGe 12-4
INVert 12-5
MAGNify 12-6
MAXimum 12-6
MINimum 12-7
OFFSet 12-7
RANGe 12-8
SUBTract 12-8
VERSus 12-9
VERTical 12-9
VERTical:OFFSet 12-10
VERTical:RANGe 12-11

Function Commands

12-2

Function Commands
DISPlay

Function Commands

The FUNCtion subsystem defines functions 1–4. The operands of these functions can
be any of the installed channels in the analyzer, waveform memories 1–4, functions
1–4, or a constant.

The vertical scaling and offset functions can be controlled remotely using the RANGe
and OFFSet commands in this subsystem. You can obtain the horizontal scaling and
position values of the functions using the HORizontal:RANge and HORizontal:POSition
queries in this subsystem.

If a channel is not on but is used as an operand, then that channel will acquire wave-
form data.

If the operand waveforms have different memory depths, the function uses the shorter
of the two.

If the two operands have the same time scales, the resulting function has the same time
scale. If the operands have different time scales, the resulting function has no valid
time scale. This is because operations are performed based on the displayed waveform
data position, and the time relationship of the data records cannot be considered.
When the time scale is not valid, delta time pulse parameter measurements have no
meaning, and the unknown result indicator is displayed on the screen.

Constant operands take on the same time scale as the associated waveform operand.

DISPlay
Command :FUNCtion<N>:DISPlay {{ON | 1} | {OFF | 0}}[,APPend]

This command either displays the selected function or removes it from the display.

<N> An integer, 1–4, representing the selected function.

APPend This optional parameter is used to turn on additional functions in Eye/Mask mode with-
out turning off any other database signals that are currently on. Without the APPend
parameter, all other database signals would be turned off when turning a function on.

Example This example turns function 1 on.

10 OUTPUT 707;":FUNCTION1:DISPLAY ON"
20 END

Query :FUNCtion<N>:DISPlay?
The query returns the displayed status of the specified function.

Returned Format [:FUNCtion<N>:DISPlay] {1 | 0}[,APPend]<NL>

12-3

Function Commands
FUNCtion<N>?

Example This example places the current state of function 1 in the variable, Setting, then prints
the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"
20 OUTPUT 707;":FUNCTION1:DISPLAY?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

FUNCtion<N>?
Query :FUNCtion<N>?

This query returns the currently defined source(s) for the function.

Returned Format [:FUNCtion<N>:<operator>] {<operand> [,<operand>]}<NL>
<N> An integer, 1–4, representing the selected function.

<operator> Active math operation for the selected function: INVert, MAGNify, MAXimum, MINi-
mum, SUBTract, or VERSus.

<operand> Any allowable source for the selected FUNCtion, including channels 1–4, waveform
memories 1–4, or functions 1–4. If the function is applied to a constant, the source
returns the constant.

Example This example returns the currently defined source for function 1.

10 OUTPUT 707;":FUNCTION1?"
20 END
If the headers are off (see :SYSTem:HEADers), the query returns only the operands,
not the operator.

10 :SYST:HEAD ON
20 :FUNC1:SUBTRACT CHAN1,CHAN2
30 :FUNC1? !returns :FUNC1:SUBTRACT CHAN1,CHAN2
40 :SYST:HEAD OFF
50 :FUNC1? !returns CHAN1,CHAN2

HORizontal
Command :FUNCtion<N>:HORizontal {AUTO | MANual}

This command sets the horizontal tracking to either AUTO or MANual.

The HORizontal command also includes a subsystem consisting of the following com-
mands and queries, which are described on the following pages:

• POSition
• RANGe

Note

This command applies only to the Magnify and Versus operators.

12-4

Function Commands
HORizontal:POSition

<N> An integer, 1–4, representing the selected function.

Query :FUNCtion<N>:HORizontal?
The query returns the current horizontal scaling mode of the specified function.

Returned Format [:FUNCtion<N>:HORizontal] {AUTO | MANual}<NL>
Example This example places the current state of function 1 horizontal tracking in the string

variable, Setting$, then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":FUNCTION1:HORIZONTAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

HORizontal:POSition
Command :FUNCtion<N>:HORizontal:POSition <position_value>

This command sets the time value at center screen for the selected function.

<N> An integer, 1–4, representing the selected function.

<position_value> Position value in time, in seconds.

Query :FUNCtion<N>:HORizontal:POSition?
The query returns the current time value at center screen of the selected function.

Returned Format [:FUNCtion<N>:HORizontal:POSition] <position><NL>
Example This example places the current horizontal position setting for function 2 in the

numeric variable, Value, then prints the contents to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:HORIZONTAL:POSITION?"
40 ENTER 707;Value
50 PRINT Value
60 END

HORizontal:RANGe
Command :FUNCtion<N>:HORizontal:RANGe <range_value>

This command sets the current time range for the specified function. This automati-
cally selects manual mode.

Note

This command applies only to the Magnify and Versus operators.

12-5

Function Commands
INVert

<N> An integer, 1–4, representing the selected function.

<range_value> Width of screen in current X-axis units (usually seconds).

Query :FUNCtion<N>:HORizontal:RANGe?
The query returns the current time range setting of the specified function.

Returned Format [:FUNCtion<N>:HORizontal:RANGe] <range><NL>
Example This example places the current horizontal range setting of function 2 in the numeric

variable, Value, then prints the contents to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:HORIZONTAL:RANGE?"
40 ENTER 707;Value
50 PRINT Value
60 END

INVert
Command :FUNCtion<N>:INVert <operand>

This command defines a function that inverts the defined operand's waveform by mul-
tiplying by –1.

<N> An integer, 1–4, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | <float_value>}
<N> An integer from 1 to 4.

Example This example sets up function 2 to invert the signal on channel 1.

10 OUTPUT 707;":FUNCTION2:INVERT CHANNEL1"
20 END

Note

This command applies only to the Magnify and Versus operators.

Note

This query returns the current time range setting of the specified function only when the respec-
tive function display is ON.

12-6

Function Commands
MAGNify

MAGNify
Command :FUNCtion<N>:MAGNify <operand>

This command defines a function that is a copy of the operand. The magnify function is
a software magnify. No hardware settings are altered as a result of using this function.
It is useful for scaling channels, another function, TDR/TDT responses or memories
with the RANGe and OFFSet commands in this subsystem.

<N> An integer, 1–4, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | <float_value>}
<N> An integer from 1 to 4.

Example This example creates a function (function 1) that is a magnified version of channel 1.

10 OUTPUT 707;":FUNCTION1:MAGNIFY CHANNEL1"
20 END

MAXimum
Command :FUNCtion<N>:MAXimum <operand>

This command defines a function that computes the maximum value of the operand
waveform in each time bucket.

<N> An integer, 1–4, representing the selected function.

Functions Used as Operands

A function may be used as a source for another function, subject to the following constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

Functions Used as Operands

A function may be used as a source for another function, subject to the following constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

12-7

Function Commands
MINimum

<operand> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | <float_value>}
<N> An integer from 1 to 4.

MINimum
Command :FUNCtion<N>:MINimum <operand>

This command defines a function that computes the minimum value of each time
bucket for the defined operand’s waveform.

<N> An integer, 1–4, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | <float_value>}
<N> An integer from 1 to 4.

OFFSet
Command :FUNCtion<N>:OFFSet <offset_value>

This command sets the voltage represented at the center of the screen for the selected
function. This automatically changes the mode from auto to manual.

<N> An integer, 1–4, representing the selected function.

<offset_value> The offset value is limited to being within the vertical range that can be represented by
the function data.

Example This example sets the offset voltage for function 1 to 2 mV.

10 OUTPUT 707;":FUNCTION1:OFFSET 2E-3"
20 END

Query :FUNCtion<N>:OFFSet?
The query returns the current offset value for the selected function.

Returned Format [:FUNCtion<N>:OFFSet] <offset_value><NL>
Example This example places the current setting for offset on function 2 in the numeric variable,

Value, then prints the result to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:OFFSET?"
40 ENTER 707;Value
50 PRINT Value
60 END

Note

This query returns the current offset value of the specified function only when the respective func-
tion display is ON.

12-8

Function Commands
RANGe

RANGe
Command :FUNCtion<N>:RANGe <full_scale_range>

This command defines the full scale vertical axis of the selected function. This auto-
matically changes the mode from auto to manual.

<N> An integer, 1–4, representing the selected function.

<full_scale_range> The full-scale vertical range.

Example This example sets the full scale range for function 1 to 400 mV.

10 OUTPUT 707;":FUNCTION1:RANGE 400E-3"
20 END

Query :FUNCtion<N>:RANGe?
The query returns the current full scale range setting for the specified function.

Returned Format [:FUNCtion<N>:RANGe] <full_scale_range><NL>
Example This example places the current range setting for function 2 in the numeric variable

“Value,” then prints the contents to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:RANGE?"
40 ENTER 707;Value
50 PRINT Value
60 END

SUBTract
Command :FUNCtion<N>:SUBTract <operand>,<operand>

This command defines a function that algebraically subtracts the second operand from
the first operand.

<N> An integer, 1–4, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | <float_value>}
<N> An integer from 1 to 4.

Example This example defines a function that subtracts waveform memory 1 from channel 1.

10 OUTPUT 707;":FUNCTION1:SUBTRACT CHANNEL1,WMEMORY1"
20 END

Note

This query returns the current full scale range setting of the specified function only when the
respective function display is ON.

12-9

Function Commands
VERSus

VERSus
Command :FUNCtion<N>:VERSus <operand>,<operand>

This command defines a function for an X-versus-Y display. The first operand defines
the Y axis and the second defines the X axis. The Y-axis range and offset are initially
equal to that of the first operand and can be adjusted with the RANGe and OFFSet
commands in this subsystem.

<N> An integer, 1–4, representing the selected function.

<operand> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | <float_value>}
<N> An integer from 1 to 4.

Example This example defines function 1 as an X-versus-Y display. Channel 1 is the X axis and
waveform memory 2 is the Y axis.

10 OUTPUT 707;":FUNCTION1:VERSUS WMEMORY2,CHANNEL1"
20 END

VERTical
Command :FUNCtion<N>:VERTical {AUTO | MANual}

This command sets the vertical scaling mode of the specified function to either AUTO
or MANual.

Functions Used as Operands

A function may be used as a source for another function, subject to the following constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

Functions Used as Operands

A function may be used as a source for another function, subject to the following constraints:

F4 can have F1, F2, or F3 as a source.

F3 can have F1 or F2 as a source.

F2 can have F1 as a source.

F1 cannot have any other function as a source.

12-10

Function Commands
VERTical:OFFSet

The VERTical command also contains a subsystem consisting of the following com-
mands and queries:

• OFFset
• RANge

<N> An integer, 1–4, representing the selected function.

Query :FUNCtion<N>:VERTical?
The query returns the current vertical scaling mode of the specified function.

Returned Format [:FUNCtion<N>:VERTical] {AUTO | MANual}<NL>
Example This example places the current state of the vertical tracking of function 1 in the string

variable, Setting$, then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":FUNCTION1:VERTICAL?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

VERTical:OFFSet
Command :FUNCtion<N>:VERTical:OFFSet <offset_value>

This command sets the voltage represented at center screen for the selected function.
This automatically changes the mode from auto to manual.

<N> An integer, 1–4, representing the selected function.

<offset_value> The offset value is limited only to being within the vertical range that can be repre-
sented by the function data.

Query :FUNCtion<N>:VERTical:OFFset?
The query returns the current offset value of the selected function.

Returned Format [:FUNCtion<N>:VERTical:OFFset] <offset_value><NL>
Example This example places the current offset setting for function 2 in the numeric variable,

Value, then prints the contents to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:VERTICAL:OFFSET?"
40 ENTER 707;Value
50 PRINT Value
60 END

Note

This query returns the current offset value of the specified function only when the respective func-
tion display is ON.

12-11

Function Commands
VERTical:RANGe

VERTical:RANGe
Command :FUNCtion<N>:VERTical:RANGe <full_scale_range>

This command defines the full-scale vertical axis of the selected function. This auto-
matically changes the mode from auto to manual, if the scope is not already in manual
mode.

<N> An integer, 1–4, representing the selected function.

<full_scale_range> The full-scale vertical range.

Query :FUNCtion<N>:VERTical:RANGe?
The query returns the current range setting of the specified function.

Returned Format [:FUNCtion<N>:VERTical:RANGe] <range><NL>
Example This example places the current vertical range setting of function 2 in the numeric vari-

able, Value, then prints the contents to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":FUNCTION2:DISPLAY ON"
30 OUTPUT 707;":FUNCTION2:VERTICAL:RANGE?"
40 ENTER 707;Value
50 PRINT Value
60 END

Note

This query returns the current range setting of the specified function only when the respective
function display is ON.

12-12

Function Commands
VERTical:RANGe

13

AREA 13-2
DPRinter 13-2
FACTors 13-3
IMAGe 13-4
PRINters? 13-4

Hardcopy Commands

13-2

Hardcopy Commands
AREA

Hardcopy Commands

The HARDcopy subsystem commands set various parameters for printing the screen.
The print sequence is activated when the root level :PRINt command is sent.

AREA
Command :HARDcopy:AREA {GRATicule | SCReen}

This command selects which data from the screen is to be printed. When you select
GRATicule, only the graticule area of the screen is printed (this is the same as choosing
Waveforms Only in the Configure Printer dialog box). When you select SCReen, the
entire screen is printed.

Example This example selects the graticule for printing.

10 OUTPUT 707;":HARDCOPY:AREA GRATICULE"
20 END

Query :HARDcopy:AREA?
The query returns the current setting for the area of the screen to be printed.

Returned Format [:HARDcopy:AREA] {GRATicule | SCReen}<NL>
Example This example places the current selection for the area to be printed in the string vari-

able, Selection$, then prints the contents of the variable to the computer's screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":HARDCOPY:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

DPRinter
Command :HARDcopy:DPRinter {<printer_number>|<printer_string>}

This command selects the default printer to be used.

<printer_number> An integer representing the attached printer. This number corresponds to the number
returned with each printer name by the ":HARDcopy:PRINters?" query.

<printer_string> A string of alphanumeric characters representing the attached printer.

13-3

Hardcopy Commands
FACTors

The HARDcopy:DPRinter command specifies a number or string for the printer
attached to the analyzer. The printer_string must exactly match the character strings
in the File, Print Setup dialog boxes, or the strings returned by the ":HARDcopy:PRINt-
ers?" query.

Examples This example sets the default printer to the second installed printer returned by the
:HARDcopy:PRINters? query.

10 OUTPUT 707;":HARDCOPY:DPRINTER 2"
20 END
This example sets the default printer to the installed printer with the name "HP Laser".

10 OUTPUT 707;":HARDCOPY:DPRINTER ""HP Laser"""
20 END

Query :HARDcopy:DPRinter?
The query returns the current printer number and string.

Returned Format [:HARDcopy:DPRinter?] {<printer_number>,<printer_string>,DEFAULT}<NL>
Or, if there is no default printer (no printers are installed), only a <NL> is returned.

Example This example places the current setting for the hardcopy printer in the string variable,
Setting$, then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":HARDCOPY:DPRinter?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

FACTors
Command :HARDcopy:FACTors {{ON | 1}|{OFF | 0}}

This command determines whether the analyzer setup factors will be appended to
screen or graticule images. FACTors ON is the same as choosing Include Setup Infor-
mation in the Configure Printer dialog box.

Example This example turns on the setup factors.

10 OUTPUT 707;":HARDCOPY:FACTORS ON"
20 END

Query :HARDcopy:FACTors?
The query returns the current setup factors setting.

Returned Format [:HARDcopy:FACTors] {1|0}<NL>

Programs Must Wait After Changing the Default Printer

It takes several seconds to change the default printer. Any programs that try to set the default
printer must wait (10 seconds is a safe amount of time) for the change to complete before sending
other commands. Otherwise the analyzer will become unresponsive.

13-4

Hardcopy Commands
IMAGe

Example This example places the current setting for the setup factors in the string variable, Set-
ting$, then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":HARDCOPY:FACTORS?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

IMAGe
Command :HARDcopy:IMAGe {NORMal | INVert | MONochrome}

This command prints the image normally, inverted, or in monochrome. IMAGe INVert is
the same as choosing Invert Waveform Colors in the Configure Printer dialog box.

Example This example sets the hardcopy image output to normal.

10 OUTPUT 707;":HARDCOPY:IMAGE NORMAL"
20 END

Query :HARDcopy:IMAGe?
The query returns the current image setting.

Returned Format [:HARDcopy:IMAGe] {NORMal | INVert | MONochrome}<NL>
Example This example places the current setting for the hardcopy image in the string variable,

Setting$, then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":HARDCOPY:IMAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

PRINters?
Query :HARDcopy:PRINters?

This query returns the currently available printers.

Returned Format [:HARDcopy:PRINters]<printer_count><NL><printer_data><NL>[,<printer_data><NL>]
<printer_count> Number of printers currently installed.

<printer_data> The printer number and the name of an installed printer. The word DEFAULT appears
next to the printer that is the currently selected default printer.

Example This example places the number of installed printers into the variable Count, loops
through that number of times, and prints the installed printer names to the computer
screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":HARDCOPY:PRINTERS?"
30 ENTER 707;Count
40 IF Count>0 THEN
50 FOR Printer_number=1 TO Count

13-5

Hardcopy Commands
PRINters?

60 ENTER 707;Setting$
70 PRINT Setting$
80 NEXT Printer_number
90 END IF
100 END

13-6

Hardcopy Commands
PRINters?

14

AXIS 14-3
MODE 14-3
SCALe:SIZE 14-4
SOURce 14-4
WINDow:BORDer 14-5
WINDow:DEFault 14-5
WINDow:SOURce 14-5
WINDow:X1Position 14-6
WINDow:X2Position 14-7
WINDow:Y1Position 14-7
WINDow:Y2Position 14-8

Histogram Commands

14-2

Histogram Commands

Histogram Commands

The Histogram commands and queries control the histogram features. A histogram is a
probability distribution that shows the distribution of acquired data within a user-defin-
able histogram window. You can display the histogram either vertically, for voltage mea-
surements, or horizontally, for timing measurements.

The most common use for histograms is measuring and characterizing noise or jitter on
displayed waveforms. Noise is measured by sizing the histogram window to a narrow
portion of time and observing a vertical histogram that measures the noise on a wave-
form. Jitter is measured by sizing the histogram window to a narrow portion of voltage
and observing a horizontal histogram that measures the jitter on an edge.

Histograms and the Database

The histograms, mask testing, and color-graded (including gray scale) display use a
specific database that uses a different memory area from the waveform record for each
channel. When any of these features are turned on, the instrument starts building the
database. The database is the size of the graticule area. Behind each pixel is a 16-bit
counter that is incremented each time data from a channel or function hits a pixel. The
maximum count (saturation) for each counter is 63,488. You can use the :MEA-
Sure:CGRade:PEAK? or DISPlay:CGRade:LEVels? queries to see if any of the counters
are close to saturation.

The database continues to build until the instrument stops acquiring data or all three
functions (color-graded display, mask testing, and histograms) are turned off. You can
set the ACQuisition:RUNTil (Run Until) mode to stop acquiring data after a specified
number of waveforms or samples are acquired. You can clear the database by turning
off all three features that use the database.

The database does not differentiate waveforms from different channels or functions. If
three channels are turned on and the waveform from each channel happens to light the
same pixel at the same time, the counter is incremented by three. However, it is not
possible to tell how many hits came from each waveform. To separate waveforms, you
can set the display to two graphs or position the waveforms vertically with the channel
offset. By separating the waveforms, you can avoid overlapping data in the database
caused by multiple waveforms. Although multiple waveforms may be displayed in
Oscilloscope mode, histogram measurements can be made on only one at a time. Set

14-3

Histogram Commands
AXIS

the histogram window source to the source you want to measure. Even if the display is
set to show only the most recent acquisition, the database keeps track of all pixel hits
while the database is building.

Remember that color-graded display, mask testing, and histograms all use the same
database. Suppose that the database is building because color-graded display is ON;
when mask testing or histograms are turned on, they can use the information already
established in the database as though they had been turned on the entire time.

To avoid erroneous data, clear the display after you change instrument setup condi-
tions or device under test (DUT) conditions and acquire new data before extracting
measurement results.

Histogram Commands

AXIS
Command :HISTogram:AXIS {VERTical | HORizontal}

This command selects the axis of the histogram. A horizontal or vertical histogram may
be created.

Example The following example defines a vertical histogram.

10 OUTPUT 707;”:HISTOGRAM:AXIS VERTICAL”
20 END

Query :HISTogram:AXIS?
The query returns the currently selected histogram axis.

Returned Format [:HISTogram:AXIS] {VERTical | HORizontal} <NL>
Example 10 DIM Axis$[50]

20 OUTPUT 707;”:HISTOGRAM:AXIS?”
30 ENTER 707;Axis$
40 PRINT Axis$
50 END

MODE
Command :HISTogram:MODE {ON | OFF | WAVeform}

This command selects the histogram mode. The histogram may be off or set on, to
track the waveform database. WAVeform is the same as ON and exists for backward
compatibility.

N O T E Do not use this command Jitter Mode. It generates a “Control is set to default” error.

Example The following example sets the histogram mode to track the waveform database.

10 OUTPUT 707;”:HISTOGRAM:MODE ON”

14-4

Histogram Commands
SCALe:SIZE

20 END
Query :HISTogram:MODE?

The query returns the currently selected histogram mode.

Returned Format [:HISTogram:MODE] {ON | OFF } <NL>
Example The following example returns the result of the mode query and prints it to the control-

ler’s screen.

10 DIM Mode$[10]
20 OUTPUT 707;”:HISTOGRAM:MODE?”
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

SCALe:SIZE
Command :HISTogram:SCALe:SIZE <size> [,{HORizontal | VERTical}]

This command sets the histogram size for vertical and horizontal mode.

<size> The size is from 1.0 to 8.0 for the horizontal mode and from 1.0 to 10.0 for the vertical
mode. Separate values are maintained for each axis. If the optional axis parameter is
not specified, the size of the current axis is set.

Example The following example sets the histogram size to 3.5.

10 OUTPUT 707;”:HISTOGRAM:SCALE:SIZE 3.5”
20 END

Query :HISTogram:SCALe:SIZE? [HORizontal | VERTical]
The query returns the correct size of the histogram.

Returned Format [:HISTogram:SCALe:SIZE] <size><NL>
Example The following example returns the result of the size query and prints it to the control-

ler’s screen.

10 DIM Scal$[50]
20 OUTPUT 707;”:HISTOGRAM:SCALE:SIZE?”
30 ENTER 707;Size$
40 PRINT Size$
50 END

SOURce
Command :HISTogram:SOURce {CHANnel<N> | FUNCtion<N> | RESPonse<N> | CGMemory}

This command selects the source of the histogram window. The histogram window will
track the source’s vertical and horizontal scale. If the optional append parameter is not
used when a .cgs file is loaded, the window source is set to CGMemory. No other source
may be selected until the histogram database is cleared.

<N> An integer, 1 through 4.

Example The following example sets the histogram source to channel 1.

14-5

Histogram Commands
WINDow:BORDer

10 OUTPUT 707;”:HISTOGRAM:SOURCE CHANNEL1”
20 END

Query :HISTogram:SOURce?
The query returns the currently selected histogram source.

Returned Format [:HISTogram:SOURce] {CHANnel<N> | FUNCtion<N> | RESPonse<N> | CGM}<NL>
Example The following example gets the current histogram source setting, which was set by the

previous :HISTogram:SOURce command.

write_IO (“:HISTogram:SOURce?”);
read_IO (Setting, SETTING_SIZE);

WINDow:BORDer
Command :HISTogram:WINDow:BORDer {ON | 1 | OFF | 0}

This command turns the histogram window border on or off.

Example The following example enables the display of the histogram window border.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:BORDER ON”
20 END

Query :HISTogram:WINDow:BORDer?
The query returns the current histogram window border setting.

Returned Format [:HISTogram:WINDow:BORDer] {ON | OFF}<NL>

WINDow:DEFault
Command :HISTogram:WINDow:DEFault

This command positions the histogram markers to a default location on the display.
Each marker will be positioned one division off the left, right, top, and bottom of the
display.

Example The following example sets the histogram window to the default position.

10 OUTPUT 707;”:HISTogram:WINDow:DEFault”
20 END

WINDow:SOURce
Command :HISTogram:WINDow:SOURce {CHANnel<N> | FUNCtion<N> | RESPonse<N> | CGMemory}

This command selects the source of the histogram window. The histogram window will
track the source’s vertical and horizontal scale. If the optional append parameter is not
used when a .cgs file is loaded, the window source is set to CGMemory. No other source
may be selected until the histogram database is cleared.

14-6

Histogram Commands
WINDow:X1Position

<N> An integer 1–4, representing the selected function.

Example The following example sets the histogram window’s source to Channel 1.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:SOURCE CHANNEL1”
20 END

Query :HISTogram:WINDow:SOURce?
The query returns the currently selected histogram window source.

Returned Format [:HISTogram:WINDow:SOURce] {CHANnel<N> | FUNCtion<N> | RESPonse<N> | CGM}<NL>
Example The following example returns the result of the window source query and prints it to

the controller’s screen.

10 DIM Winsour$[50]
20 OUTPUT 707;”:HISTOGRAM:WINDOW:SOURCE?”
30 ENTER 707;Winsour$
40 PRINT Winsour$
50 END

WINDow:X1Position
Command :HISTogram:WINDow:X1Position <X1 position>

This command moves the X1 marker of the histogram window. The histogram window
selects a portion of the database to histogram. The histogram window markers will
track the scale of the histogram window source.

Example The following example sets the X1 position to –200 microseconds.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:X1POSITION -200E-6”
20 END

Query :HISTogram:WINDow:X1Position?
The query returns the value of the X1 histogram window marker.

Returned Format [:HISTogram:WINDow:X1Position]<X1 position><NL>
Example The following example returns the result of the X1 position query and prints it to the

controller’s screen.

10 DIM X1$[50]
20 OUTPUT 707;”:HISTOGRAM:WINDOW:X1POSITION?”
30 ENTER 707;X1$
40 PRINT X1$
50 END

Compatibility with the Agilent 83480A/54750A

The :WINDow:SOURce command serves the same function as the :SOURce command and has
been retained for compatibility with the Agilent 83480A/54750A.

14-7

Histogram Commands
WINDow:X2Position

WINDow:X2Position
Command :HISTogram:WINDow:X2Position <X2 position>

This command moves the X2 marker of the histogram window. The histogram window
selects a portion of the database to histogram. The histogram window markers will
track the scale of the histogram window source.

Example The following example sets the X2 marker to 200 microseconds.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:X2POSITION 200E-6”
20 END

Query :HISTogram:WINDow:X2Position?
The query returns the value of the X2 histogram window marker.

Returned Format [:HISTogram:WINDow:X2Position] <X2 position><NL>
Example The following example returns the result of the X2 position query and prints it to the

controller’s screen.

10 DIM X2$[50]
20 OUTPUT 707;”:HISTOGRAM:WINDOW:X2POSITION?”
30 ENTER 707;X2$
40 PRINT X2$
50 END

WINDow:Y1Position
Command :HISTogram:WINDow:Y1Position <Y1 position>

This command moves the Y1 marker of the histogram window. The histogram window
selects a portion of the database to histogram. The histogram window markers will
track the scale of the histogram window source.

Example The following example sets the position of the Y1 marker to –250 mV.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:Y1POSITION -250E-3”
20 END

Query :HISTogram:WINDow:Y1Position?
The query returns the value of the Y1 histogram window marker.

Returned Format [:HISTogram:WINDow:Y1Position] <Y1 position><NL>
Example The following example returns the result of the Y1 position query and prints it to the

controller’s screen.

10 DIM Y1$[50]
20 OUTPUT 707;”:HISTOGRAM:WINDOW:Y1POSITION?”
30 ENTER 707;Y1$
40 PRINT Y1$
50 END

14-8

Histogram Commands
WINDow:Y2Position

WINDow:Y2Position
Command :HISTogram:WINDow:Y2Position <Y2 position>

This command moves the Y2 marker of the histogram window. The histogram window
selects a portion of the database to histogram. The histogram window markers will
track the scale of the histogram window source.

Example The following example sets the position of the Y2 marker to 1.

10 OUTPUT 707;”:HISTOGRAM:WINDOW:Y2POSITION 1”
20 END

Query :HISTogram:WINDow:Y2Position?
The query returns the value of the Y2 histogram window marker.

Returned Format [:HISTogram:WINDow:Y2Position] <Y2 position><NL>
Example The following example returns the result of the Y2 position query and prints it to the

controller’s screen.

10 DIM Y2$[50]
20 OUTPUT 707;”:HISTOGRAM:WINDOW:Y2POSITION?”
30 ENTER 707;Y2$
40 PRINT Y2$
50 END

15

FAIL 15-2
JITTer 15-3
LLIMit 15-3
MNFound 15-4
RUNTil 15-5
SOURce 15-5
SSCReen 15-6
SSCReen:AREA 15-8
SSCReen:IMAGe 15-8
SSUMmary 15-9
SWAVeform 15-9
SWAVeform:RESet 15-10
TEST 15-11
ULIMit 15-11

Limit Test Commands

15-2

Limit Test Commands
FAIL

Limit Test Commands

The Limit Test commands and queries control the limit test features of the analyzer.
Limit testing automatically compares measurement results with pass or fail limits. The
limit test tracks up to four measurements. The action taken when the test fails is also
controlled with commands in this subsystem.

FAIL
Command :LTESt:FAIL {INSide | OUTSide | ALWays | NEVer}

This command sets the fail condition for an individual measurement. The conditions
for a test failure are set on the source selected with the last LTESt:SOURce command.
When a measurement failure is detected by the limit test, the fail action conditions are
executed, and there is the potential to generate an SRQ.

INSide FAIL:INside causes the instrument to fail a test when the measurement results are
within the parameters set by the LTESt:LLIMit and LTESt:ULIMit commands.

OUTSide FAIL:OUTside causes the instrument to fail a test when the measurement results
exceed the parameters set by LTESt:LLIMit and LTESt:ULIMit commands.

ALWays FAIL:ALWays causes the instrument to fail a test every time the measurement is exe-
cuted, and the parameters set by the LTESt:LLIMit and LTESt:ULIMit commands are
ignored. The FAIL:ALWays mode logs the action each time the measurement is exe-
cuted. FAIL:ALWays can monitor trends in measurements, for example, tracking a mea-
surement during an environmental test while the instrument is running a measurement
for a long time, as the temperature or humidity is changed. Each time the measure-
ment is executed, the results are logged as determined by the fail action set with the
LTESt:SSCreen, LTESt:SSUMmary, or LTESt:SWAVeform commands.

NEVer FAIL:NEVer sets the instrument so a measurement never fails a test. Use the
FAIL:NEVer mode to observe one measurement but determine a failure from a differ-
ent measurement. The FAIL:NEVer mode monitors a measurement without any fail cri-
teria.

Example The following example causes the instrument to fail a test when the measurements are
outside the lower and upper limits.

10 OUTPUT 707;”:LTEST:FAIL OUTSIDE”
20 END

Query :LTESt:FAIL?
The query returns the current value set for the fail condition.

15-3

Limit Test Commands
JITTer

Returned Format [:LTESt:FAIL] {INSIDELIMITS| OUTSIDELIMITS| ALWAYSFAIL| NEVERFAIL}<NL>
Example The following example returns the current fail condition and prints the result to the

controller’s screen.

10 DIM FAIL$[50]
20 OUTPUT 707;”:LTEST:FAIL?”
30 ENTER 707;FAIL$
40 PRINT FAIL$
50 END

JITTer
Command :LTESt:JITTer:SELect {TJ|DJ|RJ|PJ|PJRMS|DDJ|ISI|DCD}

This command selects a measurement for measurement limit testing in Jitter Mode. Up
to four measurements at a time may be limit tested. This requires using the command
four times, as each issue of the command selects one measurement. Executing this
command when four measurements are already selected causes the oldest measure-
ment selection to be cleared and the new measurement to be added. All measurements
may be cleared by executing the :MEASure:CLEar command. Use the :MEA-
Sure:RESults? query to get the names of the currently selected measurements.

Example The following example selects the total jitter measurement for limit testing.

10 OUTPUT 707;”:LTEST:JITTer:SELect TJ”
20 END

LLIMit
Command :LTESt:LLIMit <lower_value>

This command sets the lower test limit for the active measurement currently selected
by the :LTESt:SOURce command.

<lower_value> A real number.

Example The following example sets the lower test limit to 1.

10 OUTPUT 707;”:LTEST:LLIMIT 1”
20 END
If, for example, you chose to measure volts peak-peak and want the smallest acceptable
signal swing to be one volt, you could use the above command, then set the limit test to
fail when the signal is outside the specified limit.

Query :LTESt:LLIMit?
The query returns the current value set by the command.

Returned Format [:LTESt:LLIMit]<lower_value><NL>
Example The following example returns the current lower test limit and prints the result to the

controller’s screen.

10 DIM LLIM$[50]
20 OUTPUT 707;”:LTEST:LLIMIT?”

15-4

Limit Test Commands
MNFound

30 ENTER 707;LLIM$
40 PRINT LLIM$
50 END

MNFound
Command :LTESt:MNFound {FAIL | PASS | IGNore}

This command sets the action to take when the measurement cannot be made. This
command affects the active measurement currently selected by the last LTESt:SOURce
command.

This command tells the instrument how to treat a measurement that cannot be made.
For example, if a risetime between 1 to 5 volts is requested and the captured signal is
between 2 to 3 volts, this control comes into play. Another use for this command is
when trying to measure the frequency of a baseline waveform.

FAIL FAIL is used when the instrument cannot make a measurement, for example, when an
edge is expected to be present and is not found. This is the mode to use for most appli-
cations.

The total number of waveforms is incremented, and the total number of failures is
incremented.

PASS PASS might be used when triggering on one event and measuring another event which
may not occur for every trigger. For example, in a communications test system, you
might want to trigger on the clock and test the risetime of edges in the data stream.
However, there may be no way to guarantee that a rising edge will be present to mea-
sure in the data stream at every clock edge. By using the PASS parameter, the limit test
will not log a failure if there is no edge found in the data stream.

If the measurement cannot be made, the total number of waveforms measured is incre-
mented, but the total number of failures is not.

IGNore IGNore is similar to PASS, except the totals for the number of waveforms and failures
are not incremented. Therefore, the total indicates the number of tests when the mea-
surement was made.

Example The following example causes the instrument to pass the test when a measurement
cannot be made.

10 OUTPUT 707;”:LTEST:MNFOUND PASS”
20 END

Query :LTESt:MNFound?
The query returns the current action set by the command.

Returned Format [:LTESt:MNFound] {FAIL | PASS | IGNore}<NL>
Example The following example gets the current setting of the measurement not found action

and prints the result to the controller’s screen.

10 DIM MNF$[50]
20 OUTPUT 707;”:LTEST:MNFOUND?”
30 ENTER 707;MNF$
40 PRINT MNF$

15-5

Limit Test Commands
RUNTil

50 END

RUNTil
Command :LTESt:RUNTil FAILures, <total_failures>

This command determines the termination conditions for the test.

FAILures FAILures runs the limit test until a set number of failures occur. When FAILures is sent,
the test executes until the selected total failures are obtained. The number of failures
are compared against this number to test for termination.

Use the FAILures mode when you want the limit test to reach completion after a set
number of failures. The total number of failures is additive for all of the measurements.
For example, if you select 10 failures, the total of 10 failures can come from several
measurements. The 10 failures can be the sum of four rise time failures, four +width
failures, and two overshoot failures.

<total_failures> An integer: 1 to 1,000,000,000.

Example The following example causes limit test to run until two failures occur.

10 OUTPUT 707;”:LTEST:RUNTil FAILures, 2”
20 END

Query :LTESt:RUNTil?
The query returns the currently selected termination condition and value.

Returned Format [:LTESt:RUNTil] {FAILures, <total_failures>}<NL>
Example The following example returns the current condition under which the limit test termi-

nates and prints the result to the controller’s screen.

10 DIM RUN$[50]
20 OUTPUT 707;”:LTEST:RUNTIL?”
30 ENTER 707;RUN$
40 PRINT RUN$
50 END

SOURce
Command :LTESt:SOURce {1 | 2 | 3 | 4}

Note

The keywords RUN or RUMode (Run Until Mode) may also be used. This command is compatible
with the Agilent 83480/54750.

Note

To run for a number of waveforms or samples, refer to ACQuire:RUNTil command on page 6-5.

15-6

Limit Test Commands
SSCReen

This command selects the current source for the ULIMit, LLIMit, MNFound, and FAIL
commands. It selects one of the active measurements as referred to by their position in
the measurement window on the bottom of the screen. Source 1 is the measurement
on the top line, 2 is on the second line, and so on.

Example The following example selects the first measurement as the source for the limit testing
commands.

10 OUTPUT 707;”:LTEST:SOURCE 1”
20 END

Query :LTESt:SOURce?
The query returns the currently selected measurement source.

Returned Format [:LTESt:SOURce] {1 | 2 | 3 | 4} <NL>
Example The following example returns the currently selected measurement source for the limit

testing commands.

10 DIM SOURCE$[50]
20 OUTPUT 707;”:LTEST:SOURCE?”
30 ENTER 707;SOURCE$
40 PRINT SOURCE$
50 END

See Also Measurements are started in the Measurement subsystem.

SSCReen
Command :LTESt:SSCReen {OFF | DISK [,<filename>]}

This command saves a copy of the screen in the event of a failure.

OFF Turns off the save action.

DISK Saves a copy of the screen to disk in the event of a failure.

Note

As a measurement is activated, the associated measurement limit test is programmed according
to default values expressed by the following script:

:LTESt:SOURce <N>
:LTESt:FAIL OUTSIde
:LTESt:LLIMIt -10
:LTESt:ULIMIt 10
:LTESt:MNFound FAIL
:LTESt:RUNTil FAILUres, 1

Before a measurement limit test is initiated, you must make the necessary adjustments to the
default values otherwise these values will be used during the limit test.

15-7

Limit Test Commands
SSCReen

<filename> An ASCII string enclosed in quotations marks. If no filename is specified, a filename will
be assigned. The default filename is MeasLimitScreenX.bmp, where X is an incremen-
tal number assigned by the instrument.

The filename field encodes the network path and the directory in which the file will be
saved, as well as the file format that will be used. The following is a list of valid filena-
mes.

If a filename is specified without a path, the default path will be
D:\User Files\screen images. The default file type is a bitmap (.bmp). The
following graphics formats are available by specifying a file extension: PCX files (.pcx),
EPS files (.eps), Postscript files (.ps), JPEG (.jpg), TIFF (.tif) and GIF files (.gif).

Example The following example saves a copy of the screen to the disk in the event of a failure.
Additional disk-related controls are set using the SSCReen:AREA and SSCReen:IMAGe
commands.

10 OUTPUT 707;”:LTEST:SSCREEN DISK”
20 END

Query :LTESt:SSCReen?
The query returns the current state of the SSCReen command.

Returned Format [:LTESt:SSCReen] {OFF | DISK [,<filename>]}<NL>

Note

The save screen options established by the commands LTESt:SSCReen DISK,
LTESt:SSCReen:AREA, and LTESt:SSCReen:IMAG are stored in the instrument’s memory and will
be employed in consecutive save screen operations, until changed by the user. This includes the
<filename> parameter for the LTESt:SSCReen DISK command. If the results of consecutive limit
tests must be stored in different files, omit the <filename> parameter and use the default filename
instead. Each screen image will be saved in a different file named MeasLimitScreenX.bmp, where
X is an incremental number assigned by the instrument.

Valid Filenames

Filename File Saved in Directory...

“Test1.gif” D:\User Files\Screen Images\

“A:test2.pcx” A:\

“.\screen2.jpg” File saved in the present working directory, set
with the command :DISK:CDIR.

“\\computer-ID\d$\test3.bmp” File saved in drive D: of computer “computer-ID”,
provided all permissions are set properly.

“E:test4.eps” File saved in the instrument’s drive E:, that could
be mapped to any disk in the network.

15-8

Limit Test Commands
SSCReen:AREA

Example The following example returns the destination of the save screen when a failure occurs
and prints the result to the controller’s screen.

10 DIM SSCR$[50]
20 OUTPUT 707;”:LTESt:SSCREEN?”
30 ENTER 707;SSCR$
40 PRINT SSCR$
50 END

SSCReen:AREA
Command :LTESt:SSCReen:AREA {GRATicule | SCReen}

This command selects which data from the screen is to be saved to disk when the run
until condition is met. When you select GRATicule, only the graticule area of the screen
is saved (this is the same as choosing Waveforms Only in the Specify Report Action for
measurement limit test dialog box). When you select SCReen, the entire screen is
saved.

Example This example selects the graticule for printing.

10 OUTPUT 707;":LTESt:SSCReen:AREA GRATICULE"
20 END

Query :LTESt:SSCReen:AREA?
The query returns the current setting for the area of the screen to be saved.

Returned Format [:LTESt:SSCReen:AREA] {GRATicule | SCReen}<NL>
Example This example places the current selection for the area to be saved in the string vari-

able, Selection$, then prints the contents of the variable to the computer's screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":LTEST:SSCREEN:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

SSCReen:IMAGe
Command :LTESt:SSCReen:IMAGe {NORMal | INVert | MONochrome}

This command saves the image normally, inverted, or in monochrome. IMAGe INVert is
the same as choosing Invert Waveform Background in the Specify Report Action for
measurement limit test dialog box.

Example This example sets the image output to normal.

10 OUTPUT 707;":LTESt:SSCReen:IMAGE NORMAL"
20 END

Query :LTESt:SSCReen:IMAGe?
The query returns the current image setting.

Returned Format [:LTESt:SSCReen:IMAGe] {NORMal | INVert | MONochrome}<NL>

15-9

Limit Test Commands
SSUMmary

Example This example places the current setting for the image in the string variable, Setting$,
then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":LTEST:SSCREEN:IMAGE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

SSUMmary
Command :LTESt:SSUMmary {OFF | DISK [,<filename>]}

This command saves the summary in the event of a failure.

When set to disk, the summary is written to the disk drive. The summary is a logging
method where the user can get an overall view of the test results. The summary is an
ASCII file that the user can read on the computer or place into a spreadsheet.

<filename> An ASCII string enclosed in quotation marks. If no filename is specified, the default file-
name will be MeasLimitSummaryX.sum, where X is an incremental number assigned
by the instrument. If a filename is specified without a path, the default path will be
D:\User files\limit summaries.

Example The following example saves the summary to a disk file named TEST.sum.

10 OUTPUT 707;”:LTEST:SSUMMARY DISK,TEST”
20 END

Query :LTESt:SSUMmary?
The query returns the current specified destination for the summary.

Returned Format [:LTESt:SSUMmary] {OFF | DISK {,<filename>}}<NL>
Example The following example returns the current destination for the summary and prints the

results to the controller’s screen.

10 DIM SUMM$[50]
20 OUTPUT 707;”:LTEST:SSUMMARY?”
30 ENTER 707;SUMM$
40 PRINT SUMM$
50 END

SWAVeform
Command :LTESt:SWAVeform <source>, <destination>[,<filename>[, <format>]]

Note

If the summary of consecutive limit tests is to be stored in separate files, omit the <filename>
parameter. Limit test summaries will be stored in files named
MeasLimitSummaryX.sum, where X is an incremental number assigned by the instrument.

15-10

Limit Test Commands
SWAVeform:RESet

This command saves waveforms from a channel, function, TDR response or waveform
memory in the event of measurement limit test termination, as specified by the
:LTEST:RUNTil command. Each waveform source can be individually specified, allow-
ing multiple channels, responses or functions to be saved to disk or waveform memo-
ries. Setting a particular source to OFF removes any waveform save action from that
source.

N O T E This command operates on waveform and color grade gray scale data which is not
compatible with Jitter Mode. Do not use this command Jitter Mode. It generates a
“Settings conflict” error.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}
<destination> {OFF | WMEMory<N> | DISK}
<filename> An ASCII string enclosed in quotation marks. If no filename is specified, the assigned

filename will be MeasLimitChN_X, MeasLimitFnN_X, MeasLimitRspN_X, or
MeasLimitMemN_X, where X is an incremental number assigned by the instrument. If
no path is specified, the default path will be D:\User Files\waveforms.

<format> {TEXT [,YVALues | VERBose] | INTernal}
where INTernal is the default value, and VERBose is the default value for TEXT.

Example The following example turns off the saving of waveforms from channel 1 in the event of
a limit test failure.

10 OUTPUT 707;”:LTEST:SWAVEFORM CHAN1,OFF”
20 END

Query :LTESt:SWAVeform? <source>
The query returns the current state of the :LTESt:SWAVeform command.

Returned Format [:LTESt:SWAVeform]<source>, <destination>, [<filename>[,<format>]]<NL>
Example The following example returns the current parameters for saving waveforms in the

event of a limit test failure.

10 DIM SWAV$[50]
20 OUTPUT 707;”:LTEST:SWAVEFORM? CHANNEL1”
30 ENTER 707;SWAV$
40 PRINT SWAV$
50 END

SWAVeform:RESet
Command :LTESt:SWAVeform:RESet

Note

If the selected waveforms of consecutive limit tests are to be stored in individual files,
omit the <filename> parameter. The waveforms will be stored in the default format
(INTERNAL) using the default naming scheme.

15-11

Limit Test Commands
TEST

This command sets the save destination for all waveforms to OFF. Setting a source to
OFF removes any waveform save action from that source. This is a convenient way to
turn off all saved waveforms if it is unknown which are being saved.

Example 10 OUTPUT 707;”:LTEST:SWAVeform:RESet”
20 END

TEST
Command :LTESt:TEST {ON | 1 | OFF | 0}

This command controls the execution of the limit test function. ON allows the limit test
to run over all of the active measurements. When the limit test is turned on, the limit
test results are displayed on screen in a window below the graticule.

Example The following example turns off the limit test function.

10 OUTPUT 707;”:LTEST:TEST OFF”
20 END

Query :LTESt:TEST?
The query returns the state of the TEST control.

Returned Format [:LTESt:TEST] {1 | 0} <NL>
Example The following example returns the current state of the limit test (on or off, 1 or 0,

respectively) and prints the result to the controller’s screen.

10 DIM TEST$[50]
20 OUTPUT 707;”:LTEST:TEST?”
30 ENTER 707;TEST$
40 PRINT TEST$
50 END

ULIMit
Command :LTESt:ULIMit <upper_value>

This command sets the upper test limit for the active measurement currently selected
by the last :LTESt:SOURce command.

Note

The results of the MEAS:RESults? query have three extra fields when LimitTESt:TEST is ON (fail-
ures, total, status). Failures is a number, total is a number, and status is one of the following val-
ues:

0OK
1failed high
2failed low
3failed inside
4other failures

15-12

Limit Test Commands
ULIMit

<upper_value> A real number.

Example The following example sets the upper limit of the currently selected measurement to
500 mV.

10 OUTPUT 707;”:LTEST:ULIMIT 500E-3”
20 END
Suppose you are measuring the maximum voltage of a signal with Vmax, and that volt-
age should not exceed 500 mV. You can use the above program and set the LTESt:FAIL
OUTSide command to specify that the limit subsystem will fail a measurement when
the voltage exceeds 500 mV.

Query :LTESt:ULIMit?
The query returns the current upper limit of the limit test.

Returned Format [:LTESt:ULIMit] <upper_value><NL>
Example The following example returns the current upper limit of the limit test and prints the

result to the controller’s screen.

10 DIM ULIM$[50]
20 OUTPUT 707;”:LTEST:ULIMIT?”
30 ENTER 707;ULIM$
40 PRINT ULIM$
50 END

16

PROPagation 16-2
REFerence 16-3
RPANnotation 16-3
STATe 16-3
X1Position 16-4
X1Y1source 16-5
X2Position 16-5
X2Y2source 16-6
XDELta? 16-6
XUNITs 16-7
Y1Position 16-7
Y2Position 16-8
YDELta? 16-8
YUNITs 16-8

Marker Commands

16-2

Marker Commands
PROPagation

Marker Commands

The commands in the MARKer subsystem are used to specify and query the settings of
the time markers (X axis) and current measurement unit markers (volts, amps, and
watts for the Y axis). The Y-axis measurement units are typically set using the CHAN-
nel:UNITs command.

PROPagation
Command :MARKer:PROPagation {DIELectric | METer},<propagation>

This command sets the propagation velocity for TDR and TDT measurements. The
propagation may be specified as a dielectric constant or in meters per second. The
value is used to determine the distance from the reference plane in TDR and TDT
marker measurements.

<propagation> Dielectric constant or propagation value. You must specify one of the modifiers
DIELectric or METer.

Example The following example sets the propagation to 30 million meters per second.

10 OUTPUT 707;":MARKER:PROPAGATION METER, 3E7"
20 END

Query :MARKer:PROPagation?
The query returns the current propagation value.

Returned Format [:MARKer:PROPagation]<propagation> {DIELectric | METer}<NL>
Example The following example gets the propagation value from the instrument, puts it into the

variable, Prop$, then displays the contents of the variable on the controller’s screen.

10 DIM Prop$[20] !Declare variable
20 OUTPUT 707;":MARKER:PROPAGATION?"
30 ENTER 707;Prop$
40 PRINT Prop$
50 END

Note

To ensure accurate marker measurements, you must ensure that the propagation value is accurate,
and that the units are set correctly (:MARKer:XUNITs). Propagation delay is always measured with
respect to the reference plane.

16-3

Marker Commands
REFerence

REFerence
Command :MARKer:REFerence {TRIGger | REFPlane}

Specifies the marker reference for TDR and TDT style markers. If the references is
TRIGger, then all horizontal axis marker measurements are made with respect to the
trigger point. If the reference is REFPlane, then all horizontal axis marker measure-
ments are made with respect to the reference plane. This feature is available only TDR/
TDT mode.

Example The following example sets the markers to indicate all horizontal axis measurements
with respect to the trigger.

10 OUTPUT 707;":MARKER:REFERENCE TRIGGER "
20 END

Query :MARKer:REFerence?
The query returns the status of the marker reference.

Returned Format [:MARKer:REFerence] {TRIGger | REFPlane} <NL>

RPANnotation
Command :MARKer:RPANnotation { {OFF | 0} | {ON | 1}}

This command sets the reference plane annotation on or off. The annotation is
depicted as an inverted orange triangle positioned along the top of the graticule.

Example The following example turns off the reference plane annotation.

10 OUTPUT 707;":MARKER:RPANNOTATION OFF"
20 END

Query :MARKer:RPANnotation?
The query returns the status of the reference plane annotation.

Returned Format [:MARKer:RPANnotation] {1 | 0} <NL>
Example The following example reads the status of the reference plane annotation, writes it to

the variable RPAN$, and displays its contents on the controller’s screen.

10 DIM RPAN$[50]
20 Output 707;":MARKer:RPANnotation? X2Y2"
30 ENTER 707;RPAN$
40 PRINT RPAN$
50 END

STATe
Command :MARKer:STATe <marker_pair>,<X_marker_state>,<Y_marker_state>

This command sets the state of a marker pair.

<marker_pair> {X1Y1 | X2Y2}

16-4

Marker Commands
X1Position

Specifies which marker pair state is set.

<X_marker_state> {OFF | MANual}
Turns the X marker on or off.

<Y_marker_state> {OFF | MANual | TRACk>
Turns the Y marker off, or sets to manual placement, or sets to tracking the source
waveform at the X position. TRACk is allowed only with the X_marker_state of manual.
TRACk is not allowed in Eye/Mask mode.

Example This example sets the X1 marker to manual and the Y1 marker to track the source
waveform at the current X1 position.

10 OUTPUT 707;":MARKer:STATe X1Y1, MANual, TRACk"
20 END

Query :MARKer:STATe? {X1Y1 | X2Y2}
Returns the states of the specified marker pair.

Returned Format [:MARKer:STATe] {X1Y1 | X2Y2},<X_marker_state>,<Y_marker_state>
Example This example returns the current state of the X2 and Y2 markers to the string variable

Marker_state$, then prints the contents of the variable to the computer screen.

10 DIM Marker_state$[50]
20 Output 707;":MARKer:STATe? X2Y2"
30 ENTER 707;Marker_state$
40 PRINT Marker_state$
50 END

X1Position
Command :MARKer:X1Position <X1_position>

This command sets the X1 marker position, and moves the X1 marker to the specified
time with respect to the trigger time, if the X1 marker is on.

<X1_position> Time at X1 marker in seconds.

Example This example sets the X1 marker to 90 ns.

10 OUTPUT 707;":MARKER:X1POSITION 90E-9"
20 END

Query :MARKer:X1Position?
The query returns the time at the X1 marker position.

Returned Format [:MARKer:X1Position] <X1_position><NL>
Example This example returns the current setting of the X1 marker to the numeric variable,

Value, then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:X1POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-5

Marker Commands
X1Y1source

X1Y1source
Command :MARKer:X1Y1source {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

This command sets the source for the X1 and Y1 markers.

<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

The source you specify must be enabled for markers to be displayed. If the channel,
function, TDR response or waveform memory that you specify is not on, an error mes-
sage is issued and the query will return NONE.

Example This example selects channel 1 as the source for markers X1 and Y1.

10 OUTPUT 707;":MARKER:X1Y1SOURCE CHANNEL1"
20 END

Query :MARKer:X1Y1source?
The query returns the current source for markers X1 and Y1.

Returned Format [:MARKer:X1Y1source] {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}<NL>
Example This example returns the current source selection for the X1 and Y1 markers to the

string variable, Selection$, then prints the contents of the variable to the computer
screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":MARKER:X1Y1SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

X2Position
Command :MARKer:X2Position <X2_position>

This command sets the X2 marker position and moves the X2 marker to the specified
time with respect to the trigger time, if the X2 marker is on.

<X2_position> Time at X2 marker in seconds.

Example This example sets the X2 marker to 90 ns.

10 OUTPUT 707;":MARKER:X2POSITION 90E-9"
20 END

Query :MARKer:X2Position?
The query returns the time at the X2 marker in seconds.

Returned Format [:MARKer:X2Position] <X2_position><NL>
Example This example returns the current position of the X2 marker to the numeric variable,

Value, then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:X2POSITION?"
30 ENTER 707;Value
40 PRINT Value

16-6

Marker Commands
X2Y2source

50 END

X2Y2source
Command :MARKer:X2Y2source {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

This command sets the source for the X2 and Y2 markers.

<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

The source you specify must be enabled for markers to be displayed. If the channel,
function, TDR response or waveform memory that you specify is not on, an error mes-
sage is issued and the query will return NONE.

Example This example selects channel 1 as the source for markers X2 and Y2.

10 OUTPUT 707;":MARKER:X2Y2SOURCE CHANNEL1"
20 END

Query :MARKer:X2Y2source?
The query returns the current source for markers X2 and Y2.

Returned Format [:MARKer:X2Y2source] {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}<NL>
Example This example returns the current source selection for the X2 and Y2 markers to the

string variable, Selection$, then prints the contents of the variable to the computer
screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":MARKER:X2Y2SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

XDELta?
Query :MARKer:XDELta?

This query returns the time difference between X1 and X2 time markers if they are
both on. If both markers are not on, 9.999999E+37 will be returned.

Xdelta = time at X2 – time at X1

Returned Format [:MARKer:XDELta] <time><NL>
<time> Time difference between X1 and X2 time markers in seconds.

Example This example returns the current time between the X1 and X2 time markers to the
numeric variable, Time, then prints the contents of the variable to the computer
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:XDELTA?"
30 ENTER 707;Time
40 PRINT Time
50 END

16-7

Marker Commands
XUNITs

XUNITs
Command :MARKer:XUNITs {SECond | METer}

This command sets the units for horizontal display in TDR and TDT applications. The
units may be in seconds or meters relative to the reference plane. The marker mode
must be TDRTDT to use this feature.

Example The following example sets the horizontal display units to meters:

10 OUTPUT 707;":MARKER:XUNITS METER"
20 END

Query :MARKer:XUNITs?
The query returns the current marker units setting.

Returned Format [:MARKer:XUNITs]{SECond | METer}<NL>
Example The following example puts the current marker units setting into the variable Units$,

then displays the contents of that variable on the controller’s screen.

10 DIM Units$[20]
20 OUTPUT 707;":MARKER:XUNITS?"
30 ENTER 707;Units$
40 PRINT Units$
50 END

Y1Position
Command :MARKer:Y1Position <Y1_position>

This command sets the Y1 manual marker position and moves the Y1 manual marker to
the specified value on the specified source if the Y1 marker is in manual state.

<Y1_position> Current measurement unit value at Y1.

Example This example sets the Y1 marker to 10 mV.

10 OUTPUT 707;":MARKER:Y1POSITION 10E-3"
20 END

Query :MARKer:Y1Position?
The query returns the current measurement unit level at the Y1 marker position.

Returned Format [:MARKer:Y1Position] <Y1_position><NL>
Example This example returns the current setting of the Y1 marker to the numeric variable,

Value, then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:Y1POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

16-8

Marker Commands
Y2Position

Y2Position
Command :MARKer:Y2Position <Y2_position>

This command sets the Y2 manual marker position and moves the Y2 manual marker to
the specified value on the specified source if the Y2 marker is in manual state.

<Y2_position> Current measurement unit value at Y2.

Example This example sets the Y2 marker to –100 mV.

10 OUTPUT 707;":MARKER:Y2POSITION -100E-3"
20 END

Query :MARKer:Y2Position?
The query returns the current measurement unit level at the Y2 marker position.

Returned Format [:MARKer:Y2Position] <Y2_position><NL>
Example This example returns the current setting of the Y2 marker to the numeric variable,

Value, then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:Y2POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

YDELta?
Query :MARKer:YDELta?

This query returns the current measurement unit difference between Y1 and Y2 if they
are both on and both have the same source. If not, 9.999999E+37 is returned.

Vdelta = value at Y2 – value at Y1

Returned Format [:MARKer:YDELta] <value><NL>
<value> Measurement unit difference between Y1 and Y2.

Example This example returns the voltage difference between Y1 and Y2 to the numeric vari-
able, Volts, then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MARKER:YDELTA?"
30 ENTER 707;Volts
40 PRINT Volts
50 END

YUNITs
Command :MARKer:YUNITs {VOLT | OHM | REFLect}

16-9

Marker Commands
YUNITs

This command sets the units for vertical display in TDR and TDT applications. The
units may be in volts, ohms, or % reflection. The marker mode must be TDRTDT to use
this feature.

Example The following example sets the vertical display units to ohms:

10 OUTPUT 707;":MARKER:YUNITS OHM"
20 END

Query :MARKer:YUNITs?
This query returns the current marker units setting.

Returned Format [:MARKer:YUNITs]{VOLT | OHM | REFLect}<NL>
Example The following example puts the current marker units setting into the variable Units$,

then displays the contents of that variable on the controller’s screen.

10 DIM Units$[20]
20 OUTPUT 707;":MARKER:YUNITS?"
30 ENTER 707;Units$
40 PRINT Units$
50 END

16-10

Marker Commands
YUNITs

17

ALIGn 17-3 SCALe:SOURce? 17-11
AMEThod 17-3 SCALe:X1 17-12
AOPTimize 17-4 SCALe:XDELta 17-12
COUNt:FAILures? 17-4 SCALe:Y1 17-13
COUNt:FSAMples? 17-5 SCALe:Y2 17-14
COUNt:HITS? 17-5 SOURce 17-14
COUNt:SAMPles? 17-6 SCALe:YTRack 17-15
COUNt:WAVeforms? 17-6 SSCReen 17-15
DELete 17-7 SSCReen:AREA 17-17
EXIT 17-7 SSCReen:IMAGe 17-17
LOAD 17-7 SSUMmary 17-18
MASK:DELete 17-8 STARt 17-18
MMARgin:PERCent 17-8 SWAVeform 17-19
MMARgin:STATe 17-9 SWAVeform:RESet 17-20
RUNTil 17-9 TEST 17-20
SAVE 17-10 TITLe? 17-21
SCALe:DEFault 17-10 YALign 17-21
SCALe:MODE 17-11

Mask Test Commands

17-2

Mask Test Commands

Mask Test Commands

The Mask Test commands and queries control the mask test features. Mask testing
automatically compares measurement results with the boundaries of the mask you
select. Any waveform or sample that falls within the boundaries of the mask is recorded
as a failure.

Mask Handling The instrument has three features that use a specific database. This database uses a
different memory area than the waveform record for each channel. The three features
that use the database are histograms, mask testing, and color grade-gray scale display.
When any one of these three features is turned on, the instrument starts building the
database. The database is the size of the graticule area, which is 321 pixels high by 451
pixels wide. Behind each pixel is a 16-bit counter. Each counter is incremented each
time a pixel is hit by data from a channel or function. The maximum count (saturation)
for each counter is 63,488. You can check to see if any of the counters is close to satu-
ration by using the :MEASure:CGRade:PEAK? query. The color-graded display uses
colors to represent the number of hits on various areas of the display.

The database continues to build until the instrument stops acquiring data or all three
functions (color grade-gray scale display, mask testing, and histograms) are turned off.
The instrument stops acquiring data when the power is cycled, the Stop/Single hardkey
is pressed, after a specified number of waveforms or samples are acquired, or as
another module is plugged in.

You can clear the database by pressing the Clear Display hardkey, cycling the power,
turning off all three features that use the database, or sending a CDISplay command.

Before firmware revision 3.00, the database does not differentiate waveforms from dif-
ferent channels or functions. If three channels are turned on and the waveform for
each channel happens to light the same pixel at the same time, the counter is incre-
mented by three. However, you cannot tell how many hits came from each waveform.
For this reason, mask test is available in Eye/Mask mode only, which allows only one
channel to function at a time. For firmware revisions 3.00 and above multiple data
bases are supported.

Compatibility with the Agilent 83480A/54750A

In commands with a REGion parameter, POLYgon may be used in place of REGion for compatibility
with the Agilent 83480A/54750A.

17-3

Mask Test Commands
ALIGn

To avoid erroneous data, clear the display after you change instrument setup condi-
tions or device under test (DUT) conditions and acquire new data before extracting
measurement results.

Mask Files

The analyzer provides a series of standard masks defined according to telecom and
datacom standards. For a complete list of masks and templates, refer to the online
Help. You load a mask file using the DISK:LOAD or :MTESt:LOAD commands. Mask
files have the .msk or .pcm extensions.

Mask Test Commands

ALIGn
Command :MTESt:ALIGn

This command automatically aligns and scales the mask to the current waveform.

Example The following example aligns the current mask to the current waveform.

10 OUTPUT 707;”:MTEST:ALIGN”
20 END

AMEThod
Command :MTESt:AMEThod {NRZeye | RZeye | ECMean | NONE}

This command sets the mask alignment method. This command should be used in the
setup section of a mask file when defining a custom mask. It will ensure that the mask
will be properly aligned if more alignment methods become available in the future.

NRZeye Aligns the mask reference point to the first eye crossing on screen for non-return to
zero (NRZ) measurements.

RZeye Aligns the mask reference point to the first center location of the eye-closing for return
to zero (RZ) measurements.

ECMean Aligns the mask reference point to the eye crossing mean of the rise and fall time at
waveform average power at the first eye crossing point for NRZ eye measurements.
This is currently applicable to 10 GbEthernet masks.

NONE No alignment takes place.

Example The following example sets the mask alignment method to NRZ.

10 OUTPUT 707;”:MTEST:AMEThod NRZ”

17-4

Mask Test Commands
AOPTimize

20 END
Query :MTESt:AMEThod?

The query returns the align method, NRZ.

Returned Format [:MTESt:AMEThod] NRZ<NL>

AOPTimize
Command :MTESt:AOPTimize {ON | 1 | OFF | 0}

This command enables/disables optimization of the placement of the center mask
region during mask alignment. This command affects the operation of mask alignment
which is performed by the :MTESt:STARt and :MTESt:ALIGn commands. When opti-
mization is turned, on the center region (Region 1) is offset along the X-axis to achieve
the best mask test margin when mask alignment is performed. The amount of offset is
in the range of ±25% of the unit interval.

Optimization is reset to off whenever a mask file is loaded. Optimization may be
enabled for a specific mask file by embedding the command ":MTESt:AOPTimize ON"
in the setup block at the end of the mask file.

Example The following example enables optimized mask alignment.

10 OUTPUT 707;":MTEST:AOPTIMIZE ON"
20 END

Query :MTESt:AOPTimize?
The query returns the state of alignment optimization.

Returned format [:MTESt:AOPTize] {1 | 0}<NL>
Example The following example returned the state of mask alignment optimization.

10 OUTPUT 707;":MTEST:AOPTIMIZE?"
20 ENTER 707;Optimize
30 Print Optimize
40 END

COUNt:FAILures?
Query :MTESt:COUNt:FAILures? REGion<N>

The query returns the number of failures that occurred within a particular region. By
defining regions within regions, then counting the failures for each individual region,
you can implement testing at different tolerance levels for a given waveform.

Not all mask test standards allow optimization.

Optimization is enabled in mask files provided by Agilent Technologies as allowed by relevant
standards. To ensure conformance, consult appropriate standards documents before enabling
optimization.

17-5

Mask Test Commands
COUNt:FSAMples?

The value 9.999E37 is returned if mask testing is not enabled or if you specify a region
number that is not used.

<N> An integer, 1 through 8, designating the region for which you want to determine the
failure count.

Returned Format [:MTESt:COUNt:FAILures] <number_of_failures><NL>
<number_of_failures> The number of failures that have occurred for the designated region.

Example The following example determines the current failure count for region 3 and prints it
on the controller screen.

10 DIM MASK_FAILURES$[50]
20 OUTPUT 707;”:MTEST:COUNT:FAILURES? REGION3”
30 ENTER 707;MASK_FAILURES$
40 PRINT MASK_FAILURES$
50 END

COUNt:FSAMples?
Query :MTESt:COUNt:FSAMples?

The query returns the total number of failed samples in the current mask test run. This
count is for all regions and all waveforms, so if you wish to determine failures by region
number, use the COUNt:FAILures? query.

The count value returned is not the sum of the failure counts for each region. For
example, assume a region 2 enclosed completely by region 1. If region 1 has 100 fail-
ures, the value returned is 100, regardless of how many failures are in region 2.
Because region 2 is completely enclosed, the failure count for region 2 must be less
than or equal to 100 in this instance.

The value 9.999E37 is returned if mask testing is not enabled.

Returned Format [:MTESt:COUNt:FSAMples] <number_of_failed_samples><NL>
<number_of_failed
_samples>

The total number of failed samples for the current test run.

Example The following example determines the number of failed samples and prints the result
on the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF”
20 OUTPUT 707;”:MTEST:COUNT:FSAMPLES?”
30 ENTER 707;MASK_FSAMPLES
40 PRINT MASK_FSAMPLES
50 END

COUNt:HITS?
Query :MTESt:COUNt:HITS? {TOTal | MARGin | MASK}

This query returns the number of failed data points (or hits) that occurred when using
margin mask testing.

17-6

Mask Test Commands
COUNt:SAMPles?

TOTal Returns the total number of failed data points. For positive margins, this is the sum of
the MASK and MARGin counts. For negative margins, this is the same as the MASK
count.

MARGin Returns the number of data points that occurred between the margin mask and the
standard mask. This is the margin area. This definition is true for both positive and neg-
ative margins.

To determine a negative margin, increase the magnitude of the negative margin until
the number of margin hits goes to zero. All data acquired since mask margin testing
was enabled will be compared to the margin. Sampled points acquired before the mar-
gin was activated, that fall into the margin region, will also show up as mask hits.

MASK Returns the number of data points that failed the standard mask.

Returned Format [:MTESt:COUNt:HITS] <number_of_hits><NL>
Example The following example determines the number of failed data points that occurred

within the mask margin.

10 OUTPUT 707;”:SYSTEM:HEADER OFF”
20 OUTPUT 707;”:MTEST:COUNT:HITS? MARGin”
30 ENTER 707;Margin_hits
40 PRINT Margin_hits
50 END

COUNt:SAMPles?
Query :MTESt:COUNt:SAMPles?

The query returns the total number of samples captured in the current mask test run.

The value 9.999E37 is returned if mask testing is not enabled.

Returned Format [:MTESt:COUNt:SAMPles] <number_of_samples><NL>
<number_of _samples> The total number of samples for the current test run.

Example The following example determines the number of samples gathered in the current test
run and prints the result on the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF”
20 OUTPUT 707;”:MTEST:COUNT:SAMPLES?”
30 ENTER 707;Mask_samples
40 PRINT Mask_samples
50 END

COUNt:WAVeforms?
Query :MTESt:COUNt:WAVeforms?

The query returns the total number of waveforms gathered in the current mask test
run.

The value 9.999E37 is returned if mask testing is not enabled.

Returned Format [:MTESt:COUNt:WAVeforms] <number_of_waveforms><NL>

17-7

Mask Test Commands
DELete

<number_of_
waveforms>

The total number of waveforms for the current test run.

Example The following example determines the number of waveforms gathered in the current
test run and prints the result on the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF”
20 OUTPUT 707;”:MTEST:COUNT:WAVEFORMS?”
30 ENTER 707;Mask_waveforms
40 PRINT Mask_waveforms
50 END

DELete
Command :MTESt:DELete

This command clears the currently loaded mask. MTESt:DELete is the preferred com-
mand. (See also MTESt:MASK:DELete.)

Example The following example deletes the currently defined mask.

10 OUTPUT 707;”:MTEST:DELETE”
20 END

EXIT
Command :MTESt:EXIT

This command terminates mask testing.

Example The following example terminates mask testing.

10 OUTPUT 707;”:MTEST:EXIT”
20 END

LOAD
Command :MTESt:LOAD "<file_name>"

This command loads the specified mask file. This command operates only on files and
directories on “A:\”, “D:\User Files”, “C:\scope\masks” and any mapped network drive.

<file_name> The filename, with the extension .msk or .pcm.

You can specify the entire path, or use a relative path such as “.” or “..”

If you use a relative path, the present working directory is assumed. Use DISK:CDIRec-
tory to change the present working directory, and DISK:PWD? to query it.

Compatibility with the Agilent 83480A/54750A

The :MTESt:TEST OFF command performs the same function as :MTESt:EXIT and is provided for
compatibility with the Agilent 83480A/54750A. For new programs, use the :MTESt:EXIT command.

17-8

Mask Test Commands
MASK:DELete

If no path is specified, a search path is followed. The directory
C:\scope\masks is searched first, then D:\User Files\masks.

If no filename extension is specified, an attempt will be made to open a file having the
specified filename with a ‘.msk’ extension appended. If unsuccessful, an attempt will be
made to open a file having the specified filename with a ‘.pcm’ extension appended.

Example This example loads the mask file FILE1.msk.

10 OUTPUT 707;":MTESt:LOAD ""FILE1.MSK"
20 END

MASK:DELete
Command :MTESt:MASK:DELete

This command deletes the complete currently defined mask.

Example The following example deletes the currently defined mask.

10 OUTPUT 707;”:MTEST:MASK:DELETE”
20 END

MMARgin:PERCent
Command :MTESt:MMARgin:PERCent <margin_percent>

This command sets the amount of mask margin to apply to the selected mask.

<margin_percent> An integer, –100 to 100, expressing the mask margin in percent.

Example The following example sets the mask margin to 50 percent.

10 OUTPUT 707;”:MTEST:MMARGIN:PERCENT 50”
20 END

Query :MTESt:MMARgin:PERCent?
The query returns the current mask margin.

Returned Format [:MTESt:MMARgin:PERCent] <margin_percent><NL>
Example The following example determines the mask margin and prints the result on the con-

troller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF”
20 OUTPUT 707;”:MTEST:MMARgin:PERCent?”
30 ENTER 707;Margin
40 PRINT Margin
50 END

Compatibility with the Agilent 83480A/54750A

The :MTESt:MASK:DELete command performs the same function as :MTESt:DELete. The
:MTESt:MASK:DELete command is provided for compatibility with the Agilent 83480A/54750A.
For new programs, use the :MTESt:DELete form.

17-9

Mask Test Commands
MMARgin:STATe

MMARgin:STATe
Command :MTESt:MMARgin:STATe {ON | 1 | OFF | 0}

This command controls the activation of the mask margin.

Example The following example activates the mask margin.

10 OUTPUT 707;”:MTEST:MMARgin:STATe ON”
20 END

Query :MTESt:MMARgin:STATe?
The query returns the current mask margin state.

Returned Format [:MTESt:MMARgin:STATe] {1 | 0}<NL>
Example The following example determines the mask margin state and prints the result on the

controller screen.

10 DIM Margin_state$[50]
20 OUTPUT 707;”:MTEST:MMARgin:STATe?”
30 ENTER 707;Margin_state$
40 PRINT Margin_state$
50 END

RUNTil
Command :MTESt:RUNTil {OFF | FSAMples, <number_of_failed_samples>}

This command selects the acquisition run until mode. The acquisition may be set to run
until n fsamples have been acquired or to run forever (OFF). If more than one limit
test criteria is set, then the instrument will act upon the completion of whichever limit
test criteria is achieved first.

Compatibility with the Agilent 83480A/54750A

The :MTESt:RUMode command serves the same function and has been retained for compatibility
with the Agilent 83480A/54750A. All new programs should use the :RUNTil command.

Acquiring a Specific Number of Waveforms or Samples

To run the acquisition for a specific number of waveforms or samples, refer to ACQuire:RUNTil
command on page 6-5.

Run Until n Fsamples

A mask test must be running (:MTESt:TEST ON or :MTESt:STARt) before setting acquisition to run
until n fsamples.

17-10

Mask Test Commands
SAVE

<number_of_failed_
samples>

An integer from 1 to 1,000,000,000.

Example The following example specifies that the acquisition runs until 50 samples have been
obtained.

10 OUTPUT 707;”:MTESt:STARt”
20 OUTPUT 707;”:MTESt:RUNTIL FSAMples,50”
30 END

Query :MTESt:RUNTil?
The query returns the currently selected run until state.

Returned Format [:MTESt:RUNTil] {OFF | FSAMPles, <n fsamples>}<NL>
Example The following example returns the result of the run until query and prints it to the con-

troller’s screen.

10 DIM Runt$[50]
20 OUTPUT 707;”:MTESt:RUNTIL?”
30 ENTER 707;Runt$
40 PRINT Runt$
50 END

SAVE
Command :MTESt:SAVE "<file_name>"

This command saves user-defined (custom) masks in either the .msk or the .pcm for-
mat.

<file-name> The filename, with the extension .msk or .pcm. If no file suffix is specified, .pcm is
appended.

You can specify the entire path, or use a relative path such as “.” or “..” Valid destina-
tions are any mapped network drive, the floppy drive (A:) and
D:\User Files and its subdirectories.

If no path is specified, the file is saved in the directory D:\User Files\masks.

If you use a relative path, the present working directory is assumed. Use DISK:CDIRec-
tory to change the present working directory, and DISK:PWD? to query it.

SCALe:DEFault
Command :MTESt:SCALe:DEFault

This command sets the scaling markers to default values. The X1, Y1, and Y2 markers
are set to values corresponding to graticule positions that are two divisions in from the
left, top, and bottom of the graticule, respectively. Y1 and Y2 are not set for fixed volt-
age masks. These values are defined in the setup section of the mask file.

Example The following example selects the default scale.

10 OUTPUT 707;”:MTEST:SCALE:DEFAULT”
20 END

17-11

Mask Test Commands
SCALe:MODE

SCALe:MODE
Command :MTESt:SCALe:MODE {XANDY| XONLy}

This command sets the mask scaling mode. This command should be used in the setup
section of a mask file when defining a custom mask. It ensures the mask will be prop-
erly loaded and adjusted on the screen. Scale mode needs to be specified for fixed volt-
age masks. All other masks are loaded as XANDY mode.

XANDY Specifies that when a mask is loaded and aligned, the time value reference point (X)
and vertical scaling points (Y) are adjusted. This parameter applies to all non-fixed
voltage masks.

XONLy Specifies that when a mask is loaded and aligned, only the time value reference point
(X) is adjusted. The vertical scaling points (Y) remain fixed. This parameter applies to
fixed voltage masks.

Example The following example sets the mask scale mode to fixed voltage masks (XONLy).

10 OUTPUT 707;" :MTEST:SCALe:MODE XONLy"
20 END

Query :MTESt:SCALe:MODE?
The query returns the scaling mode.

Returned Format [:MTESt:SCALe:MODE] {XANDY | XONL}<NL>
Example The following example gets the current scale mode setting from the instrument and

prints it on the controller screen.

10 DIM Scale_Mode$[50]
20 OUTPUT 707;" :MTEST:SCALE:MODE?"
30 ENTER 707;Scale_Mode$
40 PRINT Scale_Mode$
50 END

SCALe:SOURce?
Query :MTESt:SCALe:SOURce?

The query returns the name of the source currently used to interpret the Y1 and Y2
scale factors.

Returned Format [:MTESt:SCALe:SOURce] FUNCtion<N> | CHANnel<N> | CGMemory} <NL>
Example The following example gets the current scale source setting from the instrument and

prints it on the controller screen.

10 DIM Scale_Source$[30]
20 OUTPUT 707;”:MTEST:SCALE:SOURCE?”
30 ENTER 707;Scale_source$
40 PRINT Scale_source$
50 END

17-12

Mask Test Commands
SCALe:X1

SCALe:X1
Command :MTESt:SCALe:X1 <x1_value>

This command defines where X=0 in the base coordinate system used for mask testing.
The other X coordinate is defined by the SCALe:XDELta command. Once the X1 and
XDELta coordinates are set, all X values of vertices in region masks are defined with
respect to this value, according to the equation:

X = (X × XDELta) + X1

Thus, if you set X1 to 100 µs, and XDELta to 100 µs, an X value of .100 in a vertex is at
110 µs.

The instrument uses this equation to normalize vertex values. This simplifies repro-
gramming to handle different data rates. For example, if you halve the period of the
waveform of interest, you need only to adjust the XDELta value to set up the mask for
the new waveform.

<x1_value> A time value specifying the location of the X1 coordinate, which will then be treated as
X=0 for region vertex coordinates.

Example The following example sets the X1 coordinate at 150 µs.

10 OUTPUT 707;”:MTEST:SCALE:X1 150E-6”
20 END

Query :MTESt:SCALe:X1?
The query returns the current X1 coordinate setting.

Returned Format [:MTESt:SCALe:X1] <x1_value> <NL>
Example The following example gets the current setting of the X1 coordinate from the instru-

ment and prints it on the controller screen.

10 DIM Scale_x1$[50]
20 OUTPUT 707;”:MTEST:SCALE:X1?”
30 ENTER 707;Scale_x1$
40 PRINT Scale_x1$
50 END

SCALe:XDELta
Command :MTESt:SCALe:XDELta <xdelta_value>

This command defines the position of the X2 marker with respect to the X1 marker. In
the mask test coordinate system, the X1 marker defines where X=0; thus, the
X2 marker defines where X=1.

17-13

Mask Test Commands
SCALe:Y1

Because all X vertices of regions defined for mask testing are normalized with respect
to X1 and ∆X, redefining ∆X also moves those vertices to stay in the same locations
with respect to X1 and ∆X. Thus, in many applications, it is best if you define XDELta
as a pulse width or bit period. Then a change in data rate, without corresponding
changes in the waveform, can easily be handled by changing ∆X.

The X-coordinate of region vertices are normalized using the equation:

X = (X × XDELta) + X1

<xdelta_value> A time value specifying the distance of the X2 marker with respect to the X1 marker.

Example Assume that the period of the waveform you wish to test is 1 µs. Then the following
example will set ∆X to 1 µs, ensuring that the waveform’s period is between the X1 and
X2 markers.

10 OUTPUT 707;”:MTEST:SCALE:XDELTA 1E-6”
20 END

Query :MTESt:SCALe:XDELta?

The query returns the current value of ∆X.

Returned Format [:MTESt:SCALe:XDELta] <xdelta_value> <NL>
Example The following example gets the value of ∆X from the instrument and prints it on the

controller screen.

10 DIM Scale_xdelta$[50]
20 OUTPUT 707;”:MTEST:SCALE:XDELTA?”
30 ENTER 707;Scale_xdelta$
40 PRINT Scale_xdelta$
50 END

SCALe:Y1
Command :MTESt:SCALe:Y1 <y1_value>

This command defines where Y=0 in the coordinate system for mask testing. All Y val-
ues of vertices in the coordinate system are defined with respect to the boundaries set
by SCALe:Y1 and SCALe:Y2, according to the equation:

Y = (Y × (Y2 – Y1)) + Y1

Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of .100 in a vertex is at 190 mV.

<y1_value> A voltage value specifying the point at which Y=0.

Example The following example sets the Y1 marker to –150 mV.

10 OUTPUT 707;”:MTEST:SCALE:Y1 -150E-3”
20 END

Query :MTESt:SCALe:Y1?
The query returns the current setting of the Y1 marker.

Returned Format [:MTESt:SCALe:Y1] <y1_value><NL>

17-14

Mask Test Commands
SCALe:Y2

Example The following example gets the setting of the Y1 marker from the instrument and prints
it on the controller screen.

10 DIM Scale_y1$[50]
20 OUTPUT 707;”:MTEST:SCALE:Y1?”
30 ENTER 707;Scale_y1$
40 PRINT Scale_y1$
50 END

SCALe:Y2
Command :MTESt:SCALe:Y2 <y2_value>

This command defines Y=1 in the coordinate system for mask testing. All Y values of
vertices in the coordinate system are defined with respect to the boundaries defined by
SCALe:Y1 and SCALe:Y2, according to the following equation:

Y = (Y × (Y2 – Y1)) + Y1

Thus, if you set Y1 to 100 mV, and Y2 to 1 V, a Y value of .100 in a vertex is at 190 mV.

<y2_value> A voltage value specifying the location of the Y2 marker.

Example The following example sets the Y2 marker to 2.5 V.

10 OUTPUT 707;”:MTEST:SCALE:Y2 2.5”
20 END

Query :MTESt:SCALe:Y2?
The query returns the current setting of the Y2 marker.

Returned Format [:MTESt:SCALe:Y2] <y2_value> <NL>
Example The following example gets the setting of the Y2 marker from the instrument and prints

it on the controller screen.

10 DIM Scale_y2$[50]
20 OUTPUT 707;”:MTEST:SCALE:Y2?”
30 ENTER 707;Scale_y2$
40 PRINT Scale_y2$
50 END

SOURce
Command :MTESt:SOURce {CHANnel<N> | FUNCtion<N> | CGMemory}

This command sets the database source for mask tests. The default is the lowest num-
bered database signal displayed.

<N> An integer, 1 through 4.

Example The following example sets the mask test source to channel 1.

10 OUTPUT 707;”:MTEST:SOURCE CHANNEL1”
20 END

Query :MTESt:SOURce?
This query returns the current database source for the mask test.

17-15

Mask Test Commands
SCALe:YTRack

Returned Format [:MTESt:SOURce] {CHANnel<N> | FUNCtion<N> | CGMemory}<NL>
Example The following example gets the current mask test source and puts the source value in

the setting.

10 DIM Source$[50]
20 OUTPUT 707;”:MTESt:SOURce?”
30 ENTER 707;Source$
40 PRINT Source$
50 END

SCALe:YTRack
Command :MTESt:SCALe:YTRack {{ON | 1} {OFF | 0}}

This command enables or disables tracking between the Y1 and Y2 levels.

Example The following program enables tracking between Y1 and Y2.

10 OUTPUT 707;":MTEST:SCALE:YTRACK:ON"
20 END

Query :MTESt:SCALe:YTRack?
The query returns the current state of the tracking.

Returned Format [:MTESt:SCALe:YTRack] {1 | 0}<NL>
Example The following example determines the state of Y tracking and prints the results on the

controller screen.

10 DIM Ytrack_state$[50]
20 OUTPUT 707;”:MTESt:SCALe:YTRack?”
30 ENTER 707;Ytrack_state$
40 PRINT Ytrack_state$
50 END

SSCReen
Command :MTESt:SSCReen {OFF | DISK [,<filename>]}

This command saves a copy of the screen in the event of a failure.

OFF Turns off the save action.

DISK Saves a copy of the screen to disk in the event of a failure.

<filename> An ASCII string enclosed in quotations marks. If no filename is specified, a filename will
be assigned. The default filename is MaskLimitScreenX.bmp, where X is an incremen-
tal number assigned by the instrument.

17-16

Mask Test Commands
SSCReen

The filename field encodes the network path and the directory in which the file will be
saved, as well as the file format that will be used. The following is a list of valid filena-
mes.

If a filename is specified without a path, the default path will be
D:\User Files\screen images

The default file type is a bitmap (.bmp). The following graphics formats are available by
specifying a file extension: PCX files (.pcx), EPS files (.eps), Postscript files (.ps),
JPEG (.jpg), TIFF (.tif), and GIF files (.gif).

Example The following example saves a copy of the screen to the disk in the event of a failure.
Additional disk-related controls are set using the SSCReen:AREA and SSCReen:IMAGe
commands.

10 OUTPUT 707;”:MTESt:SSCREEN DISK”
20 END

Query :MTESt:SSCReen?
The query returns the current state of the SSCReen command.

Returned Format [:MTESt:SSCReen] {OFF | DISK [,<filename>]}<NL>
Example The following example returns the destination of the save screen when a failure occurs

and prints the result to the controller’s screen.

Save Screen Options Stored in Memory

The save screen options established by the commands MTESt:SSCReen DISK,
MTESt:SSCReen:AREA, and MTESt:SSCReen:IMAG are stored in the instrument’s memory and
will be employed in consecutive save screen operations, until changed by the user. This includes
the <filename> parameter for the MTESt:SSCReen DISK command. If the results of consecutive
limit tests must be stored in different files, omit the <filename> parameter and use the default
filename instead. Each screen image will be saved in a different file named MaskLim-
itScreenX.bmp, where X is an incremental number assigned by the instrument.

Valid Filenames

Filename File Saved in Directory...

“Test1.gif” D:\User Files\Screen Images\

“A:test2.pcx” A:\

“.\screen2.jpg” File saved in the present working directory, set
with the command :DISK:CDIR.

“\\computer-ID\d$\test3.bmp” File saved in drive D: of computer “computer-ID”,
provided all permissions are set properly.

“E:test4.eps” File saved in the instrument’s drive E:, that could
be mapped to any disk in the network.

17-17

Mask Test Commands
SSCReen:AREA

10 DIM SSCR$[50]
20 OUTPUT 707;”:MTESt:SSCREEN?”
30 ENTER 707;SSCR$
40 PRINT SSCR$
50 END

SSCReen:AREA
Command :MTESt:SSCReen:AREA {GRATicule | SCReen}

This command selects which data from the screen is to be saved to disk when the run
until condition is met. When you select GRATicule, only the graticule area of the screen
is saved (this is the same as choosing Waveforms Only in the Specify Report Action for
mask limit test dialog box). When you select SCReen, the entire screen is saved.

Example This example selects the graticule for saving.

10 OUTPUT 707;":MTEST:SSCREEN:AREA GRATICULE"
20 END

Query :MTESt:SSCReen:AREA?
The query returns the current setting for the area of the screen to be saved.

Returned Format [:MTESt:SSCReen:AREA] {GRATicule | SCReen}<NL>
Example This example places the current selection for the area to be saved in the string vari-

able, Selection$, then prints the contents of the variable to the computer's screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":MTEST:SSCREEN:AREA?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

SSCReen:IMAGe
Command :MTESt:SSCReen:IMAGe {NORMal | INVert | MONochrome}

This command saves the screen image to disk normally, inverted, or in monochrome.
IMAGe INVert is the same as choosing Invert Waveform Background Color in the Spec-
ify Report Action for acquisition limit test dialog box.

Example This example sets the image output to normal.

10 OUTPUT 707;":MTEST:SSCREEN:IMAGE NORMAL"
20 END

Query :MTESt:SSCReen:IMAGe?
The query returns the current image setting.

Returned Format [:MTESt:SSCReen:IMAGe] {NORMal | INVert | MONochrome}<NL>
Example This example places the current setting for the image in the string variable, Setting$,

then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable
20 OUTPUT 707;":MTEST:SSCREEN:IMAGE?"

17-18

Mask Test Commands
SSUMmary

30 ENTER 707;Setting$
40 PRINT Setting$
50 END

SSUMmary
Command :MTESt:SSUMmary {OFF | DISK [,<filename>]}

This command saves the summary in the event of a failure.

When set to disk, the summary is written to the disk drive. The summary is a logging
method where the user can get an overall view of the test results. The summary is an
ASCII file that the user can read on the computer or place into a spreadsheet.

<filename> An ASCII string enclosed in quotation marks. If no filename is specified, the default file-
name will be MaskLimitSummaryX.sum, where X is an incremental number assigned
by the instrument. If a filename is specified without a path, the default path will be
D:\User Files\limit summaries.

Example The following example saves the summary to a disk file named TEST.sum.

10 OUTPUT 707;”:MTEST:SSUMMARY DISK,TEST”
20 END

Query :MTESt:SSUMmary?
The query returns the current specified destination for the summary.

Returned Format [:MTESt:SSUMmary] {OFF | DISK {,<filename>}}<NL>
Example The following example returns the current destination for the summary and prints the

results to the controller’s screen.

10 DIM SUMM$[50]
20 OUTPUT 707;”:MTEST:SSUMMARY?”
30 ENTER 707;SUMM$
40 PRINT SUMM$
50 END

STARt
Command :MTESt:STARt

Storing Summaries of Limit Tests in Individual Files

If the summary of consecutive limit tests is to be stored in individual files, omit the <file-
name> parameter. Limit test summaries will be stored in files named
MaskLimitSummaryX.sum, where X is an incremental number assigned by the instru-
ment.

17-19

Mask Test Commands
SWAVeform

This command aligns the currently loaded mask to the current waveform, and starts
testing. If no mask is currently loaded, a warning message will be displayed, but no
error will be generated.

SWAVeform
Command :MTESt:SWAVeform <source>, <destination>[,<filename>[, <format>]]

This command saves waveforms from a channel, function, or waveform memory in the
event of a failure detected by the limit test. Each waveform source can be individually
specified, allowing multiple channels,or functions to be saved to disk or waveform
memories. Setting a particular source to OFF removes any waveform save action from
that source.

N O T E This command operates on waveform and color grade gray scale data which is not
compatible with Jitter Mode. Do not use this command Jitter Mode. It generates a
“Settings conflict” error.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}
<destination> {OFF | WMEMory<N>| DISK}
<filename> An ASCII string enclosed in quotation marks. If no filename is specified, the assigned

filename will be MaskLimitChN_X, MaskLimitFnN_X, MaskLimitRspN_X, or
MaskLimitMemN_X, where X is an incremental number assigned by the instrument. If
no path is specified, the default path will be D:\User Files\waveforms.

<format> {TEXT [,YVALues | VERBose] | INTernal}
where INTernal is the default value, and VERBose is the default value for TEXT.

Example The following example turns off the saving of waveforms from channel 1 in the event of
a limit test failure.

10 OUTPUT 707;”:MTEST:SWAVEFORM CHAN1,OFF”
20 END

Query :MTESt:SWAVeform? <source>

Compatibility with the Agilent 83480A/54750A

The :MTESt:TEST ON command serves the same function and has been retained for compatibility
with the Agilent 83480A/54750A. All new programs should use the :STARt command.

Storing Waveforms of Limit Tests in Individual Files

If the selected waveforms of consecutive limit tests are to be stored in individual files,
omit the <filename> parameter. The waveforms will be stored in the default format
(INTERNAL) using the default naming scheme.

17-20

Mask Test Commands
SWAVeform:RESet

The query returns the current state of the :MTESt:SWAVeform command.

Returned Format [:MTESt:SWAVeform] <source>, <destination>, [<filename>[,<format>]]<NL>
Example The following example returns the current parameters for saving waveforms in the

event of a limit test failure.

10 DIM SWAV$[50]
20 OUTPUT 707;”:MTEST:SWAVEFORM? CHANNEL1”
30 ENTER 707;SWAV$
40 PRINT SWAV$
50 END

SWAVeform:RESet
Command :MTESt:SWAVeform:RESet

This command sets the save destination for all waveforms to OFF. Setting a source to
OFF removes any waveform save action from that source. This is a convenient way to
turn off all saved waveforms if it is unknown which are being saved.

Example 10 OUTPUT 707;”:MTEST:SWAVeform:RESet”
20 END

TEST
Command :MTESt:TEST {ON | 1 | OFF | 0}

This command controls the execution of the Mask Test function. ON behaves as the
:MTESt:STARt command on page 17-18. OFF behaves as the :MTEST:EXIT command
on page 17-7.

Mode Mask limit test only.

Example The following example determines whether the mask test subsystem is on or off and
prints the result on the controller screen.

10 DIM Mtest_state$[30]
20 OUTPUT 707;”:MTEST:TEST?”
30 ENTER 707;Mtest_state$
40 PRINT Mtest_state$
50 END

Query :MTESt:TEST?
The query returns the state of the mask test subsystem, whether on or off.

Returned Format [:MTESt:TEST] {1 | 0}<NL>

Compatibility with the Agilent 83480A/54750A

This command has been retained for compatibility with the Agilent 83480A/54750A. All new pro-
grams should avoid using this command.

17-21

Mask Test Commands
TITLe?

TITLe?
Query :MTESt:TITLe?

This query returns the string of the currently loaded mask. If no mask is loaded, a null
string is returned.

Returned Format [:MTESt:TITLe] <“title”>

YALign
This command sets the vertical axis alignment mode of the mask. It ensures the mask
will be properly adjusted on the screen. Alignment mode needs to be specified for opti-
cal NRZ masks.

Command :MTESt:YALign {DISPlay | EWINdow}
DISPlay Specifies that instrument aligns the mask using Vtop and Vbase of the eye diagram.

This parameter applies to fixed voltage masks.

EWINdow Specifies that instrument aligns the mask using the one level and zero level of the eye
diagram. This parameter applies to optical NRZ masks.

Example The following example aligns the mask to the one level and zero level of the eye dia-
gram.

10 OUTPUT 707;" :MTEST:YALign EWINdow"
20 END

Query :MTESt:YALign?
The query returns the alignment mode.

Returned Format [:MTES:YAL] {DISP | EWIN}<NL>

17-22

Mask Test Commands
YALign

18

ANNotation 18-4 HISTogram:M3S? 18-25 SCRatch 18-41
APOWer 18-4 HISTogram:MEAN? 18-26 SENDvalid 18-42
CGRade:AMPLitude 18-5 HISTogram:MEDian? 18-26 SOURce 18-42
CGRade:BITRate 18-6 HISTogram:PEAK? 18-27 TEDGe? 18-43
CGRade:COMPlete 18-6 HISTogram:PP? 18-27 TMAX 18-44
CGRade:CRATio 18-7 HISTogram:PPOSition? 18-28 TMIN 18-45
CGRade:CROSsing 18-8 HISTogram:SCALe? 18-28 TVOLt? 18-45
CGRade:DCDistortion 18-9 HISTogram:STDDev? 18-29 VAMPlitude 18-46
CGRade:DCYCle 18-9 JITTer:DCD? 18-29 VAVerage 18-47
CGRade:EHEight 18-10 JITTer:DDJ? 18-29 VBASe 18-48
CGRade:ERATio 18-11 JITTer:DDJVsbit? 18-30 VMAX 18-48
CGRade:ERFactor 18-11 JITTer:DJ? 18-30 VMIN 18-49
CGRade:ESN 18-12 JITTer:EBITs? 18-30 VPP 18-50
CGRade:EWIDth 18-12 JITTer:EDGE 18-31 VRMS 18-50
CGRade:JITTer 18-13 JITTer:ISI? 18-31 VTIMe? 18-51
CGRade:OFACtor 18-14 JITTer:LEVel? 18-31 VTOP 18-52
CGRade:OLEVel 18-14 JITTer:LEVel:DEFine 18-32
CGRade:PEAK? 18-15 JITTer:PATTern? 18-32
CGRade:PWIDth 18-16 JITTer:PJ? 18-33
CGRade:SOURce 18-16 JITTer:PJRMS? 18-33
CGRade:ZLEVel 18-17 JITTer:RJ? 18-33
CLEar 18-17 JITTer:SIGNal 18-34
DEFine 18-18 JITTer:SIGNal:AUTodetect 18-34
DEFine CGRade 18-20 JITTer:TJ? 18-34
DELTatime 18-20 JITTer:UNITs 18-35
DUTYcycle 18-21 NWIDth 18-35
FALLtime 18-22 OVERshoot 18-36
FREQuency 18-23 PERiod 18-37
HISTogram:HITS? 18-24 PWIDth 18-37
HISTogram:M1S? 18-24 RESults? 18-38
HISTogram:M2S? 18-25 RISetime 18-41

Measure Commands

18-2

Measure Commands

Measure Commands

The commands in the MEASure subsystem are used to make parametric measure-
ments on displayed waveforms.

The Agilent 86100A has three modes: Eye/Mask, TDR/TDT, and Oscilloscope. Each
mode has a set of measurements. In Eye/Mask mode, all of the measurements are made
on the color grade/gray scale data, with the exception of average optical power and his-
togram measurements.

Measurement Setup

To make a measurement, the portion of the waveform required for that measurement
must be displayed on the analyzer.

• For a period or frequency measurement, at least one and one half complete cy-
cles must be displayed.

• For a pulse width measurement, the entire pulse must be displayed.

• For a rise time measurement, the leading (positive-going) edge of the wave-
form must be displayed.

• For a fall time measurement, the trailing (negative-going) edge of the wave-
form must be displayed.

• A valid source for the measurement must be designated. This can be done glo-
bally with the MEASure:SOURce command or locally with the optical source
parameter in each measurement.

User-Defined Measurements

When user-defined measurements are made, the defined parameters must be set
before actually sending the measurement command or query.

18-3

Measure Commands

Measurement Error

If a measurement cannot be made because of the lack of data, because the source sig-
nal is not displayed, the requested measurement is not possible (for example, a period
measurement on an FFT waveform), or for some other reason, the following results are
returned:

• 9.99999E+37 is returned as the measurement result.

• If SENDvalid is ON, the error code is also returned.

Making Measurements

If more than one period, edge, or pulse is displayed, time measurements are made on
the first, left-most portion of the displayed waveform.

When any of the defined measurements are requested, the analyzer first determines
the top (100%) and base (0%) voltages of the waveform. From this information, the
analyzer determines the other important voltage values (10%, 90%, and 50% voltage
values) for making measurements.

The 10% and 90% voltage values are used in the rise-time and fall-time measurements
when standard measurements are selected. The 50% voltage value is used for measur-
ing frequency, period, pulse width, and duty cycle with standard measurements
selected.

You can also make measurements using user-defined parameters, instead of the stan-
dard measurement values.

When the command form of a measurement is used, the analyzer is placed in the con-
tinuous measurement mode. The measurement result will be displayed on the front
panel. There may be a maximum of four measurements running continuously. Use the
SCRatch command to turn off the measurements.

When the query form of the measurement is used, the measurement is made one time,
and the measurement result is returned.

• If the current acquisition is complete, the current acquisition is measured and
the result is returned.

• If the current acquisition is incomplete and the analyzer is running, acquisitions
will continue to occur until the acquisition is complete. The acquisition will
then be measured and the result returned.

• If the current acquisition is incomplete and the analyzer is stopped, the mea-
surement result will be 9.99999E+37 and the incomplete result state will be re-

18-4

Measure Commands
ANNotation

turned if SENDvalid is ON.

All measurements are made using the entire display, except for VRMS which allows
measurements on a single cycle, and eye measurements in the defined eye window.
Therefore, if you want to make measurements on a particular cycle, display only that
cycle on the screen.

Measurements are made on the displayed waveforms specified by the SOURce com-
mand. The SOURce command allows two sources to be specified. Most measurements
are only made on a single source. Some measurements, such as the DELTatime mea-
surement, require two sources.

The measurement source for remote measurements can not be set from the front
panel. The measurement source is not reset by power cycles or default setup.

If the signal is clipped, the measurement result may be questionable. In this case, the
value returned is the most accurate value that can be made using the current scaling.
You might be able to obtain a more accurate measurement by adjusting the vertical
scale to prevent the signal from being clipped. The measurement result 9.99999E+37
may be returned in some cases of clipped signals.

Measure Commands

ANNotation
Command :MEASure:ANNotation {ON | 1 | OFF | 0}

This command turns measurement annotations on or off. If there are no active mea-
surements, you can still turn on or off measurement annotations. The instrument will
remain in the defined state and will be activated (if on) the next time measurements
are performed.

Mode All instrument modes.

Example The following example turns on measurement annotations.

10 OUTPUT 707;”:MEASURE:ANNOTATION ON”
20 END

Query :MEASure:ANNotation?
The query returns the current measurement annotation state.

Returned Format [:MEASure:ANNotation] {1 | 0}

APOWer
Command :MEASure:APOWer <units> [,<source>]

18-5

Measure Commands
CGRade:AMPLitude

This command measures the average power. Sources are specified with the MEA-
Sure:SOURce command or with the optional parameter following the APOWer com-
mand. The average optical power can only be measured on an optical channel input.

Mode Eye or Oscilloscope modes

<units> {WATT | DECibel}
<source> {CHANnel<N>}
<N> For channels, this value is dependent on the type of module and its location in the

instrument. It will work only on optical channels.

Example The following example measures the average power of the last specified signal.

10 OUTPUT 707;”:MEASURE:APOWER WATT”
20 END

Query :MEASure:APOWer? <units> [,<source>]
The query returns the measured power of the specified source.

Returned Format [:MEASure:APOWer] <value>[,<result_state>]<NL>
<value> The average power.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current power of the specified signal in the numeric
variable, Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:APOWER? WATT”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:AMPLitude
Command :MEASure:CGRade:AMPLitude [<source>]

This command measures the eye amplitude of the displayed source. The eye amplitude
is the difference between the one level and the zero level.

Mode Eye mode only.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the eye amplitude of the displayed signal.

10 OUTPUT 707;”:MEASURE:CGRADE:AMPLITUDE”
20 END

Query :MEASure:CGRade:AMPLitude? [<source>]
The query returns the eye amplitude of the eye signal of the displayed source.

Returned Format [:MEASure:CGRade:AMPLitude] <value>[,<result_state>]<NL>
<value> The eye amplitude.

<result state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

18-6

Measure Commands
CGRade:BITRate

Example This example queries the analyzer for the eye amplitude of the displayed signal, places
the result in the numeric variable, EyeAmp, and then prints the contents of the vari-
able to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:AMPLITUDE?”
30 ENTER 707;EyeAmp
40 PRINT EyeAmp
50 END

CGRade:BITRate
Command :MEASure:CGRade:BITRate [<source>]

This command measures the bit rate of the displayed signal. The bit rate is the number
of bits per second. It is measured as the inverse of the bit period. In NRZ eye mode, the
bit period is the time interval between two successive crossing points of an eye. In RZ
eye mode, the bit period is the time interval between the 50% falling (or rising) edges
of 2 consecutive eyes.

Mode Eye mode only.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the bit rate of the displayed eye.

10 OUTPUT 707;”:MEASURE:CGRADE:BITRATE”
20 END

Query :MEASure:CGRade:BITRate? [<source>]
The query returns the bit rate of the eye signal of the displayed source. Units are in
bits/s.

Returned Format [:MEASure:CGRade:BITRate] <value>[,<result_state>]<NL>
<value> The bit rate.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example This example queries the analyzer for the bit rate of the displayed signal, places the
result in the numeric variable, BitRate, and then prints the contents of the variable to
the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:BITRATE?”
30 ENTER 707;BitRate
40 PRINT BitRate
50 END

CGRade:COMPlete
Command :MEASure:CGRade:COMPlete <comp_hits>

This command sets the color grade measurement completion criterion. The data for
color grade display is the same as for gray scale display.

18-7

Measure Commands
CGRade:CRATio

Mode Eye or Oscilloscope modes

<comp_hits> The number of hits that the peak-numbers-of-hits, in the color grade database, must
equal or exceed before a color grade measurement is executed.

Example The following example sets the completion criterion to 10 hits.

10 OUTPUT 707;”:MEASURE:CGRADE:COMPLETE 10”
20 END

Query :MEASure:CGRade:COMPlete?
The query returns the current setting for color grade completion.

Returned Format [:MEASure:CGRade:COMPlete] <comp_hits><NL>
A color grade measurement query will return 9.99999E+37 until the measurement is
complete.

Example The following example sets the color grade complete value, then starts a Vmax mea-
surement with the color grade database as the source.

10 OUTPUT 707;”:MEASURE:CGRADE:COMPLETE? 8”
20 OUTPUT 707;”:DEFINE:CGRADE ON”
30 OUTPUT 707;”:MEASURE:VMAX CGRADE”
40 END

CGRade:CRATio
Command :MEASure:CGRade:CRATio <format> [,<source>]

This command measures the contrast ratio of the RZ (Return-to-Zero) eye diagram on
the color graded display. The dark level or dc offset of the input channel must have
been previously calibrated. See “ERATio:STARt” on page 7-5 to perform a dark level
calibration. If the source is not set, the lowest numbered signal that is on will be the
source of the measurements.

Mode Eye mode only. Ensure that the eye type is set to RZ. See “DEFine” on page 18-18.

<format> {RATio | DECibel | PERCent}
<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the contrast ratio.

10 OUTPUT 707;”:MEASURE:CGRADE:CRATIO PERCENT”
20 END

Query :MEASure:CGRade:CRATio? <format> [,<source>]

Auto Skew Uses CGRade:COMPlete

Auto skew (page 7-12) also uses the current color grade measurement completion criterion. If auto
skew fails to make the bit rate measurement or determine the time of the crossing points needed
to compute the skew, it may be necessary to increase the color grade completion criterion.
Increasing the value will increase the time for auto skew to complete, allowing it to collect more
data points before executing teh bit rate and crossing time measurements.

18-8

Measure Commands
CGRade:CROSsing

This query returns the contrast ratio of the color graded display.

Returned Format [:MEASure:CGRade:CRATio] <value>[,<result_state>]<NL>
<value> The contrast ratio.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current contrast ratio in the numeric variable, Value,
then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:CRATIO? PERCENT”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:CROSsing
Command :MEASure:CGRade:CROSsing [<source>]

This command measures the crossing level percent of the current eye diagram on the
color grade or gray scale display. The data for color grade display is the same as for
gray scale display. If the source is not set, the lowest numbered signal that is on will be
the source of the measurement.

Mode Eye mode only. Ensure that the eye type is set to NRZ. See “DEFine CGRade” on
page 18-20.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the crossing level.

10 OUTPUT 707;”:MEASURE:CGRade:CROSsing”
20 END

Query :MEASure:CGRade:CROSsing? [<source>]
The query returns the crossing level percent of the current eye diagram on the color
grade or gray scale display.

Returned Format [:MEASure:CGRade:CROSsing] <value>[,<result_state>]<NL>
<value> The crossing level.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current crossing level in the numeric variable, Value,
then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:CROSSING?”
30 ENTER 707;Value
40 PRINT Value
50 END

18-9

Measure Commands
CGRade:DCDistortion

CGRade:DCDistortion
Command :MEASure:CGRade:DCDistortion <format>[,<source>]

This command measures the duty cycle distortion on the eye diagram of the current
color grade or gray scale display. The parameter specifies the format for reporting the
measurement. The data for color grade display is the same as for gray scale display. If
the source is not set, the lowest numbered signal that is on will be the source of the
measurement.

Mode Eye mode only. Ensure that the eye type is set to NRZ. See “DEFine CGRade” on
page 18-20.

<format> {TIME | PERCent}
<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the duty cycle distortion.

10 OUTPUT 707;”:MEASURE:CGRADE:DCDistortion TIME”
20 END

Query :MEASure:CGRade:DCDistortion? <format> [,<source>]
The query returns the duty cycle distortion of the color grade or gray scale display.

Returned Format [:MEASure:CGRade:DCDistortion] <value>[,<result_state>] <NL>
<value> The duty cycle distortion.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current duty cycle distortion in the numeric variable,
Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:DCDISTORTION? PERCENT”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:DCYCle
Command :MEASure:CGRade:DCYCle [<source>]

This command measures the duty cycle of the RZ (Return-to-Zero) eye diagram on the
color graded display. If the source is not set, the lowest numbered signal display that is
on will be the source of the measurement.

Mode Eye mode only. Ensure that the eye type is set to RZ. See “DEFine CGRade” on
page 18-20.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the duty cycle of the color graded display.

10 OUTPUT 707;”:MEASURE:CGRADE:DCYCle”
20 END

18-10

Measure Commands
CGRade:EHEight

Query :MEASure:CGRade:DCYCle? [<source>]
This query returns the duty cycle of the color graded display.

Returned Format [:MEASure:CGRade:DCYCle]<value>[,<result_state>]<NL>
<value> The duty cycle.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current duty cycle in the numeric variable, Value,
then prints the contents of the variable of the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASure:CGRade:DCYCle?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:EHEight
Command :MEASure:CGRade:EHEight <format> [,<source>]

This command measures the eye height on the eye diagram of the current color grade
display. The data for color grade display is the same as for gray scale display. If the
source is not set, the lowest numbered signal display that is on will be the source of the
measurement.

Mode Eye mode only.

<format> {RATio | DECibel}
<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the eye height.

10 OUTPUT 707;”:MEASURE:CGRADE:EHEight”
20 END

Query :MEASure:CGRade:EHEight? <format> [,<source>]
The query returns the eye height of the color grade display. RATio sets the eye height
in amplitude units. DECibel sets the eye height in DB units.

Returned Format [:MEASure:CGRade:EHEight] <value>[,<result_state>]<NL>
<value> The eye height.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current eye height in the numeric variable, Value,
then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:EHEIGHT?”
30 ENTER 707;Value
40 PRINT Value
50 END

18-11

Measure Commands
CGRade:ERATio

CGRade:ERATio
Command :MEASure:CGRade:ERATio <format> [,<source>]

This command measures the extinction ratio on the eye diagram of the current color
grade display. The dark level or dc offset of the input channel must have been previ-
ously calibrated. The data for color grade display is the same as for gray scale display. If
the source is not set, the lowest numbered signal display that is on will be the source of
the measurement.

Mode Eye mode only.

<format> {RATio | DECibel | PERCent}
<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the extinction ratio.

10 OUTPUT 707;”:MEASURE:CGRADE:ERATIO RATIO”
20 END

Query :MEASure:CGRade:ERATio? <format> [,<source>]
The query returns the extinction ratio of the color grade display.

Returned Format [:MEASure:CGRade:ERATio] <value>[,<result_state>]<NL>
<value> The extinction ratio.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current extinction ratio in the numeric variable,
Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:ERATIO? RATIO”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:ERFactor
Command :MEASure:CGRade:ERFactor CHANnel<N>,{ON|OFF}[,<correction_factor>]

This command is used to turn on or off the extinction ratio correction and, optionally,
to set the correction factor used when correction is turned on. CHANnel<N> specifies
a channel, where <N> is 1, 2, 3 or 4. Each channel has its own setting for on or off and
for correction factor. <correction_factor> is a percentage value that is used to offset
the measured extinction ratio value. Correction factor is always specified as a percent-
age, regardless of the format or units specified for extinction ratio measurement
results.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example 10 OUTPUT 707; ":MEASure:CGRade:ERFactor CHANnel4,ON,80"

18-12

Measure Commands
CGRade:ESN

20 END

Query :MEASure:CGRade:ERFactor? CHANnel<N>
This query returns the extinction ratio correction settings for the specified channel. A
correction factor value is returned regardless of whether correction is on or off.

Returned Format [:MEASure:CGRade:ERFactor] {ON|OFF}<NL>

CGRade:ESN
Command :MEASure:CGRade:ESN [<source>]

This command measures the eye signal-to-noise. The data for color grade display is the
same as for gray scale display. If the source is not set, the lowest numbered signal dis-
play that is on will be the source of the measurement.

Mode Eye mode only.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the eye signal-to-noise.

10 OUTPUT 707;”:MEASURE:CGRADE:ESN”
20 END

Query :MEASure:CGRade:ESN? [<source>]
The query returns the eye signal-to-noise of the color grade display.

Returned Format [:MEASure:CGRade:ESN] <value>[,<result_state>]<NL>
<value> The eye signal-to-noise value.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the eye signal-to-noise value in the numeric variable,
Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:ESN?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:EWIDth
Command :MEASure:CGRade:EWIDth <format> [,<source>]

Note

This measurement was called Q-factor in the 83480A/54750A.

18-13

Measure Commands
CGRade:JITTer

This command measures the eye width on the eye diagram of the current color grade
display. The data for color grade display is the same as for gray scale display. If the
source is not set, the lowest numbered signal display that is on will be the source of the
measurement.

Mode Eye mode only.

<format> {RATio | TIME}
The default format is TIME.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the eye width.

10 OUTPUT 707;”:MEASURE:CGRADE:EWIDTH”
20 END

Query :MEASure:CGRade:EWIDth? <format> [,<source>]
The query returns the eye width of the color grade display.

Returned Format [:MEASure:CGRade:EWIDth] <value>[,<result_state>] <NL>
<value> The eye width.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current eye width in the numeric variable, Value,
then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:EWIDTH?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:JITTer
Command :MEASure:CGRade:JITTer <format> [,<source>]

This command measures the jitter at the eye diagram crossing point. The parameter
specifies the format, peak-to-peak or RMS, in which the results are reported. The data
for color grade display is the same as for gray scale display. If the source is not set, the
lowest numbered signal display that is on will be the source of the measurement.

Mode Eye or Oscilloscope modes. In either mode the source is color grade data.

<format> {PP | RMS}
<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the jitter.

10 OUTPUT 707;”:MEASURE:CGRADE:JITTER RMS”
20 END

Query :MEASure:CGRade:JITTer? <format> [,<source>]
The query returns the jitter of the color grade display.

Returned Format [:MEASure:CGRade:JITTer] <value>[,<result_state>] <NL>

18-14

Measure Commands
CGRade:OFACtor

<value> The jitter.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current jitter in the numeric variable, Value, then
prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:JITTER? RMS”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:OFACtor
Command :MEASure:CGRade:OFACtor [<source>]

This command measures the opening factor of the RZ (Return-to-Zero) eye diagram on
the color graded display. If the source is not set, the lowest numbered signal display
that is on will be the source of the measurement.

Mode Eye mode only. Ensure that the eye type is set to RZ. See “DEFine CGRade” on
page 18-20.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the opening factor of the color graded display.

10 OUTPUT 707;”:MEASure:CGRade:OFACtor”
20 END

Query :MEASure:CGRade:OFACtor? [<source>]
This query returns the opening factor of the color graded display.

Returned Format [:MEASure:CGRade:OFACtor] <value>[,<result_state>]<NL>
<value> The opening factor.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current opening factor in the numeric variable,
Value, then prints the contents of the variable of the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASure:CGRade:OFACtor?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:OLEVel
Command :MEASure:CGRade:OLEVel [<source>]

18-15

Measure Commands
CGRade:PEAK?

This command measures the logic one level inside the eye window. If the source is not
set, the lowest numbered signal display that is on will be the source of the measure-
ment.

Mode Eye mode only.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the logic one level.

10 OUTPUT 707;”:MEASURE:CGRADE:OLEVEL”
20 END

Query :MEASure:CGRade:OLEVel? [<source>]
The query returns the logic one level of the color grade display.

Returned Format [:MEASure:CGRade:OLEVel] <value>[,<result_state>]<NL>
<value> The logic one level.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current logic one level in the numeric variable, Value,
then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:OLEVEL?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:PEAK?
Query :MEASure:CGRade:PEAK? [<source>]

The query returns the maximum number of hits of the color grade display. The data for
color grade display is the same as for gray scale display. If the source is not set, the low-
est numbered signal display that is on will be the source of the measurement.

Mode Eye or Oscilloscope modes.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Returned Format [:MEASure:CGRade:PEAK] <value>[,<result_state>]<NL>
<value> The number of hits.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current number of hits in the numeric variable,
Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:CGRADE:PEAK?”
30 ENTER 707;Value
40 PRINT Value
50 END

18-16

Measure Commands
CGRade:PWIDth

CGRade:PWIDth
Command :MEASure:CGRade:PWIDth [<source>]

This command measures the pulse width of the eye diagram on the color graded dis-
play. If the source is not set, the lowest numbered signal display that is on will be the
source of the measurement.

Mode Eye mode only. Ensure that the eye type is set to RZ. See “DEFine CGRade” on
page 18-20.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the pulse width of the color graded display.

10 OUTPUT 707;”:MEASure:CGRade:PWIDth”
20 END

Query :MEASure:CGRade:PWIDth? [<source>]
This query returns the pulse width of the color graded display.

Returned Format [:MEASure:CGRade:PWIDth] <value>[,<result_state>]<NL>
<value> The pulse width.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current pulse width in the numeric variable, Value,
then prints the contents of the variable of the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASure:CGRade:PWIDth?”
30 ENTER 707;Value
40 PRINT Value
50 END

CGRade:SOURce
Command :MEASure:CGRade:SOURce <source>

This command sets the default source for color grade-gray scale measurements. If this
source is not set, the lowest numbered color grade-gray scale signal that is on will be
the source of the measurements. This command is similar to the :MEASure:SOURce
command, with the exception of specifying a color grade-gray scale signal.

Mode Eye and Oscilloscope modes.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
<N> An integer, from 1 through 4.

Example This example selects channel 1 as the source for measurements.

10 OUTPUT 707;":MEASure:CGRade:SOURce CHANNEL1"
20 END

Query :MEASure:SOURce? <source>

18-17

Measure Commands
CGRade:ZLEVel

The query returns the current source selection.

Returned Format [:MEASure:CGRade:SOURce] <source><NL>
Example This example places the currently specified sources in the string variable, Source$,

then prints the contents of the variable to the computer's screen.

10 DIM Source$[50] !Dimension variable
20 OUTPUT 707;":MEASURE:CGRade:SOURCE?"
30 ENTER 707;Source$
40 PRINT Source$
50 END

CGRade:ZLEVel
Command :MEASure:CGRade:ZLEvel [<source>]

This command measures logic zero level inside the eye window on the eye diagram of
the current color grade display. If the source is not set, the lowest numbered signal dis-
play that is on will be the source of the measurement.

Mode Eye mode only.

<source> {CHANnel<N> | FUNCtion<N> | CGMemory}
Example The following example measures the logic zero level.

10 OUTPUT 707;”:MEASure:CGRade:ZLEVel”
20 END

Query :MEASure:CGRade:ZLEVel? [<source>]
The query returns the logic zero level of the color grade display.

Returned Format [:MEASure:CGRade:ZLEVel] <value>[,<result_state>]<NL>
<value> The logic zero level.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current logic zero level in the numeric variable,
Value, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASure:CGRade:ZLEVel?”
30 ENTER 707;Value
40 PRINT Value
50 END

CLEar
Command :MEASure:CLEar

This command clears the measurement results from the screen. It is identical to the
:MEASure:SCRatch command.

Example The following example clears the current measurement results from the screen.

10 OUTPUT 707;”:MEASure:CLEAR”

18-18

Measure Commands
DEFine

20 END

DEFine
Command :MEASure:DEFine <meas_spec>

This command sets up the definition for measurements by specifying the delta time,
threshold, or top-base values. Changing these values may affect other measure com-
mands. The following table identifies the relationships between user-DEFined values
and other MEASure commands.

<meas_spec> {THResholds,TOPBase,EWINdow,CGRade,DELTatime}

Table 18-1. :MEASure:DEFine Interactions

MEASure Commands THResholds TOPBase EWINdow CGRAde DELTatime

RISEtime x x
FALLtime x x
PERiod x x
FREQuency x x
VTOP x
VBASe x
VAMPlitude x
PWIDth x x
NWIDth x x
OVERshoot x x
DUTYcycle x x
DELTatime x x
VRMS x x
PREShoot x x
VLOWer x x
VMIDdle x x
VUPPer x x
VAVerage x x
VARea x x
DELTatime x x x
CGRade:CRATio x x
CGRade:CROSsing x x
CGRade:DCDistortion x x
CGRade:DCYCle x x
CGRade:ERATio x

18-19

Measure Commands
DEFine

Command :MEASure:DEFine THResholds,{{STANdard} | {PERCent,<upper_pct>,<middle_pct>,<lower_pct>} |
{UNITs,<upper_volts>,<middle_volts>,<lower_volts>}}

<upper_pct>
<middle_pct>
<lower_pct>

An integer, –25 to 125.

<upper_units>
<middle_units>
<lower_units>

A real number specifying amplitude units.

Command :MEASure:DEFine TOPBase,{{STANdard} |{<top_volts>,<base_volts>}}
<top_volts>
<base_volts>

A real number specifying voltage.

Command :MEASure:DEFine EWINdow,<ewind1pct>,<ewind2pct>
<ewind1pct>
<ewind2pct>

An integer, 0 to 100, specifying an eye window as a percentage of the bit period unit
interval.

Example If one source is specified, both parameters apply to that signal. If two sources are spec-
ified, the measurement is from the first positive edge on source 1 to the second nega-
tive edge on source 2.

Source is specified either using MEASure:SOURce, or using the optional <source>
parameter when the DELTatime measurement is started.

Command :MEASure:DEFine CGRade,{RZ | NRZ}
This command defines the eye type.

Command :MEASure:DEFine DELTatime {<start edge_direction>,<start edge_number>,<start
edge_position>,<stop edge_direction>,<stop edge_number>,<stop edge_position>}
This command is used to set up edge parameters for delta time measurement.

<edge_direction> {RISing | FALLing | EITHer}
<edge_number> An integer, from 1 to 20.

<edge_position> {UPPer | MIDDle | LOWer}
Query :MEASure:DEFine? {EWINdow | THResholds | TOPBase | CGRade | DELTatime}
Returned Format [:MEASure:DEFine] EWIN,<signal_type><NL>

[:MEASure:DEFine] CGR,<signal_type><NL>
[:MEASure:DEFine] THR {{STAN} | {PERcent,<upper_pct>,<middle_pct>,<lower_pct>} |
{VOLTage, <upper_volts>,<middle_volts>,<lower_volts>}}<NL>

CGRade:EHEight x
CGRade:ESN x
CGRade:OFACtor x
CGRade:OLEVel x
CGRade:PWIDth x
CGRade:ZLEVel x

Table 18-1. :MEASure:DEFine Interactions (Continued)

MEASure Commands THResholds TOPBase EWINdow CGRAde DELTatime

18-20

Measure Commands
DEFine CGRade

[:MEASure:DEFine] TOPB {{STAN} |{<top_volts>,<base_volts>}}<NL>
[:MEASure:DEFine] CGR {{RZ | NRZ}}
[:MEASure:DEFine] DELT, {<start edge_direction>,<start edge_number>,<start edge_position>,<stop
edge_direction>,<stop edge_number>,<stop edge_position>}<NL>

Example This example returns the current setup for the measurement thresholds to the string
variable, Setup$, then prints the contents of the variable to the computer's screen.

10 DIM Setup$[50] !Dimension variable
20 OUTPUT 707;":MEASURE:DEFINE? THRESHOLDS"
30 ENTER 707; Setup$
40 PRINT Setup$
50 END

DEFine CGRade
Command :MEASure:DEFine CGRade,{RZ | NRZ}

This command defines the eye type.

Mode Eye mode only.

Example This example sets the eye type to RZ eye.

10 OUTPUT 707;":MEASure:DEFine CGRade, RZ"
20 END

Query :MEASure:DEFine? CGRade
The query returns the eye type.

Returned Format [:MEASure:DEFine?]CGR, <signal_type>
<signal_type> {RZ | NRZ}
Example The following example checks the current eye type of the analyzer to the string vari-

able, Setup$, then prints the contents of the variable to the computer's screen.

10 DIM Setup$[50] !Dimension variable
20 OUTPUT 707;":MEASURE:DEFINE? CGRADE"
30 ENTER 707;Setup$
40 PRINT Setup$
50 END

DELTatime
Command :MEASure:DELTatime [<source>[,<source>]]

Use the Suffix Multiplier Instead

Using "mV" or "V" following the numeric value for the voltage value will cause Error 138-Suffix not
allowed. Instead, use the convention for the suffix multiplier as described in “Message Communica-
tion and System Functions” on page 1-34.

18-21

Measure Commands
DUTYcycle

This command measures the time delay between two edges. If no source is specified,
then the sources specified using the :MEASure:SOURce command are used. If only one
source is specified, then the edges used for computing delta time belong to that source.
If two sources are specified, then the first edge used in computing to delta time belongs
to the first source and the second edge belongs to the second source.

Mode Oscilloscope and TDR modes

<source> {CHANnel<N>| FUNCtion<N> | WMEMory<N> | RESPonse <N>}
<N> An integer, from 1 through 4.

Example The following example measures the delta time between channel 1 and channel 2.

10 OUTPUT 707;”:MEASURE:DELTATIME CHANNEL1,CHANNEL2”
20 END

Query :MEASure:DELTatime? [<source>[,<source>]]
The query returns the measured delta time value.

Returned Format [:MEASure:DELTatime] <value> [,<result_state>]<NL>
<value> Delta time from the first specified edge on one source to the next specified edge on

another source.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current value of delta time in the numeric variable,
Value, then prints the contents of the variable to the controller’s screen. This example
assumes the source was set using MEASure:SOURce.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:DELTATIME?”
30 ENTER 707;Value
40 PRINT Value
50 END

DUTYcycle
Command :MEASure:DUTYcycle [<source>]

This command measures the ratio of the positive pulse width to the period. Sources are
specified with the MEASure:SOURce command or with the optional parameter follow-
ing the DUTYcycle command.

Mode Oscilloscope mode only.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the headers
may cause misinterpretation of returned data.

18-22

Measure Commands
FALLtime

<N> For channels: Value is dependent on the type of plug-in and its location in the instru-
ment. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2, 3, or 4.

Example The following example measures the duty cycle of the last specified signal.

10 OUTPUT 707;”:MEASURE:DUTYCYCLE”
20 END

Query :MEASure:DUTYcycle? [<source>]
The query returns the measured duty cycle of the specified source.

Returned Format [:MEASure:DUTYcycle] <value>[,<result_state>]<NL>
<value> The ratio of the positive pulse width to the period.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current duty cycle of the specified signal in the
numeric variable, Value, then prints the contents of the variable to the controller’s
screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:DUTYCYCLE?”
30 ENTER 707;Value
40 PRINT Value
50 END

FALLtime
Command :MEASure:FALLtime [<source>]

This command measures the time at the upper threshold of the falling edge, measures
the time at the lower threshold of the falling edge, then calculates the fall time. Sources
are specified with the MEASure:SOURce command or with the optional parameter fol-
lowing the FALLtime command.

The first displayed falling edge is used for the fall-time measurement. Therefore, for
best measurement accuracy, set the sweep speed as fast as possible while leaving the
falling edge of the waveform on the display.

 Fall time = time at lower threshold point – time at upper threshold point.

Mode All instrument modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | CGRade}
Where CHANnel<N>, FUNCtion<N>, RESPonse<N> and WMEMory<N> apply in
Oscilloscope and TDR modes only, and CGRade in Eye mode only.

<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

Example This example measures the fall time of the last specified signal.

10 OUTPUT 707;":MEASURE:FALLTIME"
20 END

Query :MEASure:FALLtime?[<source>]
The query returns the fall time of the specified source.

18-23

Measure Commands
FREQuency

Returned Format [:MEASure:FALLtime] <value>[,<result_state>]<NL>
<value> Time at lower threshold – time at upper threshold.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example This example places the current value for fall time in the numeric variable, Value, then
prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:FALLTIME?"
30 ENTER 707;Value
40 PRINT Value
50 END

FREQuency
Command :MEASure:FREQuency [<source>]

Measures the frequency of the first complete cycle on the screen using the mid-thresh-
old levels of the waveform (50% levels if standard measurements are selected). The
source is specified with the MEASure:SOURce command or with the optional parame-
ter following the FREQuency command.

The algorithm is:

If the first edge on screen is rising, then

frequency = 1/(time at second rising edge – time at first rising edge)

else,

frequency = 1/(time at second falling edge – time at first falling edge).

Mode Oscilloscope mode only

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}
<N> For channels: Value is dependent on the type of plug-in and its location in the instru-

ment. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2, 3, or 4.

Example The following example measures the frequency of the last specified signal.

10 OUTPUT 707;”:MEASURE:FREQUENCY”
20 END

Query :MEASure:FREQuency? [<source>]
The query returns the measured frequency.

Returned Format [:MEASure:FREQuency] <value>[,<result_state>]<NL>
 <value> The frequency value, in Hertz, of the first complete cycle on the screen using the mid-

threshold levels of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current frequency of the signal in the numeric vari-
able, Freq, then prints the contents of the variable to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off

18-24

Measure Commands
HISTogram:HITS?

20 OUTPUT 707;”:MEASURE:FREQUENCY?”
30 ENTER 707;Freq
40 PRINT Freq
50 END

HISTogram:HITS?
Query :MEASure:HISTogram:HITS? [<source>]

This query returns the number of hits within the histogram. The source can be speci-
fied with the optional parameter following the HITS query. The HISTogram:HITS?
query only applies to the histogram.

<source> {HISTogram}
Returned Format [:MEASure:HISTogram:HITS] <value>[,<result_state>]<NL>
<value> The number of hits in the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the number of hits within the current histogram and
prints the result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:HITS?”
30 ENTER 707;Histhits
40 PRINT Histhits
50 END

HISTogram:M1S?
Query :MEASure:HISTogram:M1S? [<source>]

This query returns the percentage of points that are within one standard deviation of
the mean of the histogram. The source can be specified with the optional parameter
following the M1S query. The HISTogram:M1S? query only applies to the histogram
waveform.

<source> {HISTogram}
Returned Format [:MEASure:HISTogram:M1S] <value>[,<result_state>]<NL>
<value> The percentage of points within one standard deviation of the mean of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the percentage of points within one standard deviation
of the mean of the current histogram and prints the result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:M1S?”
30 ENTER 707;Histm1s
40 PRINT Histm1s
50 END

18-25

Measure Commands
HISTogram:M2S?

HISTogram:M2S?
Query :MEASure:HISTogram:M2S? [<source>]

This query returns the percentage of points that are within two standard deviations of
the mean of the histogram. The sources can be specified with the optional parameter
following the M2S query. The HISTogram:M2S? query only applies to the histogram
waveform.

<source> {HISTogram}
Returned Format [:MEASure:HISTogram:M2S] <value>[,<result_state>]<NL>
<value> The percent of points within two standard deviations of the mean of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the percentage of points within two standard deviations
of the mean of the current histogram and prints the result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:M2S?”
30 ENTER 707;Histm2s
40 PRINT Histm2s
50 END

HISTogram:M3S?
Query :MEASure:HISTogram:M3S? [<source>]

This query returns the percentage of points that are within three standard deviations
of the mean of the histogram. The source can be specified with the optional parameter
following the M3S query. The HISTogram:M3S? query only applies to the histogram
waveform.

<source> {HISTogram}
Returned Format [:MEASure:HISTogram:M3S] <value>[,<result_state>] <NL>
<value> The percentage of points within three standard deviations of the mean of the histo-

gram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the percentage of points within three standard devia-
tions of the mean of the current histogram and prints the result to the controller
screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:M3S?”
30 ENTER 707;Histm3s
40 PRINT Histm3s
50 END

18-26

Measure Commands
HISTogram:MEAN?

HISTogram:MEAN?
Query :MEASure:HISTogram:MEAN? [<source>]

This query returns the mean of the histogram. The mean of the histogram is the aver-
age value of all the points in the histogram. The source can be specified with the
optional parameter following the MEAN query. The HISTogram:MEAN? query only
applies to the histogram waveform.

<source> {HISTogram}
Returned Format [:MEASure:HISTogram:MEAN] <value>[,<result_state>]<NL>
<value> The mean of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the mean of the current histogram and prints the result
to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:MEAN?”
30 ENTER 707;Histmean
40 PRINT Histmean
50 END

HISTogram:MEDian?
Query :MEASure:HISTogram:MEDian? [<source>]

This query returns the median of the histogram. The median of the histogram is the
time or voltage of the point at which 50% of the histogram is to the left or right (above
or below for vertical histograms). The source can be specified with the optional param-
eter following the MEDian query. The HISTogram:MEDian? query only applies to the
histogram waveform.

<source> {HISTogram}
Returned Format [:MEASure:HISTogram:MEDian] <value>[,<result_state>]<NL>
<value> The median of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the median of the current histogram and prints the
result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:MEDIAN?”
30 ENTER 707;Histmed
40 PRINT Histmed
50 END

18-27

Measure Commands
HISTogram:PEAK?

HISTogram:PEAK?
Query :MEASure:HISTogram:PEAK? [<source>]

This query returns the number of hits in the histogram's greatest peak. The source can
be specified with the optional parameter following the PEAK query. The HISTo-
gram:PEAK? query only applies to the histogram waveform.

<source> {HISTogram}
Returned Format [:MEASure:HISTogram:PEAK] <value>[,<result_state>]<NL>
<value> The width of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the number of hits in the histogram’s greatest peak and
prints the result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:PEAK?”
30 ENTER 707;Histpeak
40 PRINT Histpeak
50 END

HISTogram:PP?
Query :MEASure:HISTogram:PP? [<source>]

This query returns the width of the histogram. The width is measured as the time or
voltage of the last histogram bucket with data in it minus the time or voltage of the first
histogram bucket with data in it. The source can be specified with the optional parame-
ter following the PP query. The HISTogram:PP? query only applies to the histogram
waveform.

<source> {HISTogram}
Returned Format [:MEASure:HISTogram:PPos] <value>[,<result_state>]<NL>
<value> The width of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the width of the current histogram and prints the result
to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:PP?”
30 ENTER 707;Histpp
40 PRINT Histpp
50 END

18-28

Measure Commands
HISTogram:PPOSition?

HISTogram:PPOSition?
Query :MEASure:HISTogram:PPOSition? [<source>]

This query returns the position of the greatest peak of the histogram. If there is more
than one peak, then it returns the position of the first peak from the lower boundary of
the histogram window for vertical axis histograms. Otherwise, in the case of horizontal
axis histograms, it returns the position of the first peak from the leftmost boundary of
the histogram window. The optional parameter MEASure:SOURce command can be
used to specify the source for the measurement. This query can only be applied to his-
togram data, therefore the histogram must be turned on in order to use this query.

<source> {HISTogram}
Returned Format [:MEASure:HISTogram:PPosition] <value>[,<result_state>]<NL>
<value> The value of the greatest peak of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example 10 OUTPUT 707;”:MEASURE:HISTOGRAM:PPOSITION? HISTOGRAM”
20 ENTER 707;HMaxVal
30 PRINT HMaxVal
40 END

HISTogram:SCALe?
Query :MEASure:HISTogram:SCALe? [<source>]

The query returns the scale of the histogram in hits per division. The source can be
specified with the optional parameter following the SCALe query. The HISTo-
gram:SCALe? query only applies to the histogram waveform.

<source> {HISTogram}
Returned Format [:MEASure:HISTogram:SCALe] <value>[,<result_state>]<NL>
<value> The scale of the histogram in hits.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the scale of the histogram whose source is specified in
MEASure:SOURce and prints the result to the controller screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:SCALE?”
30 ENTER 707;Histscal
40 PRINT Histscal
50 END

18-29

Measure Commands
HISTogram:STDDev?

HISTogram:STDDev?
Query :MEASURE:HISTogram:STDDev? [<source>]

This query returns the standard deviation of the histogram. The source can be speci-
fied with the optional parameter following the STDDev query. The HISTogram:STD-
Dev? query only applies to the histogram waveform.

<source> {HISTogram}
Returned Format [:MEASure:HISTogram:STDDev] <value>[,<result_state>]<NL>
<value> The standard deviation of the histogram.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the standard deviation of the histogram whose source is
specified using the MEASure:SOURce command, and prints the result to the controller
screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:HISTOGRAM:STDDEV?”
30 ENTER 707;Histstdd
40 PRINT Histstdd
50 END

JITTer:DCD?
Query :MEASure:JITTer:DCD?

This query returns the duty cycle distortion value measured on the current source.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:MEASure:JITTer:DCD] <value><NL>
Example 10 OUTPUT 707;”:MEASure:JITTer:DCD?”

20 ENTER 707;Dcd
30 PRINT Dcd
40 END

JITTer:DDJ?
Query :MEASure:JITTer:DDJ?

This query returns the data-dependent jitter value measured on the current source.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:MEASure:JITTer:DDJ] <value><NL>

18-30

Measure Commands
JITTer:DDJVsbit?

Example 10 OUTPUT 707;”:MEASure:JITTer:DDJ?”
20 ENTER 707;Ddj
30 PRINT Ddj
40 END

JITTer:DDJVsbit?
Query :MEASure:JITTer:DDJVsbit?

This query returns definite-length block data. The data block contains DDJ values for
each edge has that been measured. DDJ values are returned for only the edge types
specified by the command MEASure:JITTer:EDGE. Each DDJ value is 32-bit floating
point (4 bytes). The data block is followed by a terminator character, 0A hex (line-
feed). The DDJ value has units of time or unit interval as specified by the :MEA-
Sure:JITTer:UNITs command.

Use the :MEASure:JITTer:EBITs? query to return the bit numbers. Use the :MEASure:JITTer:PAT-
Tern? query to return the edge type values.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:MEASure:JITTer:DDJVsbit] <value><NL>
Example 10 OUTPUT 707;”:MEASure:JITTer:DDJVsbit?”

20 ENTER 707;Ddjvsbit

JITTer:DJ?
Query :MEASure:JITTer:DJ?

This query returns the deterministic jitter value measured on the current source.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:MEASure:JITTer:DJ] <value><NL>
Example 10 OUTPUT 707;”:MEASure:JITTer:DJ?”

20 ENTER 707;Dj
30 PRINT Dj
40 END

JITTer:EBITs?
Query :MEASure:JITTer:EBITs?

This query returns an ordered list of edge bit numbers returned as definite-length
block data. Each value is the number of the bit in the pattern preceding the edge tran-
sition and is in the range of 0 to PatternLength-1. Each bit number is a four byte inte-

18-31

Measure Commands
JITTer:EDGE

ger. Only the edges of the type specified by the command :MEASure:JITTer:EDGE are
included in the list. The data block is followed by a terminator character, 0A hex (line-
feed). This query will return an incomplete list of edges, if all of the data needed to
determine the pattern has not yet been acquired.

This query produces an error if jitter signal type is set to clock signal.

Use the :MEASure:JITTer:DDJVsbit? query to return the DDJ values. Use the :MEASure:JIT-
Ter:PATTern? query to return the edge type values.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:MEASure:JITTer:EBITs] <value><NL>

JITTer:EDGE
Command :MEASure:JITTer:EDGE {RISing|FALLing|ALL}

This command specifies which edge for which to display measurement results.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Example :MEASure:JITTer:EDGE ALL
Query :MEASure:JITTer:EDGE?

This query returns the current edge setting for jitter mode measurements.

Returned Format [:TRIGger:] {RIS|FALL|ALL}<NL>

JITTer:ISI?
Query :MEASure:JITTer:ISI?

This query returns the inter-symbol interference value measured on the current
source.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:MEASure:JITTer:ISI] <value><NL>
Example 10 OUTPUT 707;”:MEASure:JITTer:ISI?”

20 ENTER 707;Isi
30 PRINT Isi
40 END

JITTer:LEVel?
Query :MEASure:JITTer:LEVel?

18-32

Measure Commands
JITTer:LEVel:DEFine

This query returns the amplitude level at which jitter measurements are made.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:MEASure:JITTer:LEVel] <value><NL>
Example 10 OUTPUT 707;”:MEASure:JITTer:LEVel?”

20 ENTER 707;Lvl
30 PRINT Lvl
40 END

JITTer:LEVel:DEFine
Command :MEASure:JITTer:LEVel:DEFine {PERCent,<percentage_value> | UNITs,<level_value> | AVERage}

This command defines the jitter sampling level. It may be specified as a percentage in
the range of 30% to 70%, as an absolute amplitude level, or as the average amplitude of
the test signal.

If you specify UNITs, the level value is interpreted as Watts or Volts depending on the
type of input channel selected: optical or electrical. For example, if a value of 500E-3 is
entered, it will be interpreted as 5 mW when applied to an optical channel and 5 mV
when applied to an electrical channel.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Example :MEASure:JITTer:LEVel:DEFine PERCent,40
Query :MEASure:JITTer:LEVel:DEFine?

This query returns the current setting for the jitter sampling level.

Returned Format [:MEASure:JITTer:LEVel:DEFine] <value><NL>

JITTer:PATTern?
Query :MEASure:JITTer:PATTern?

This query returns definite-length block data. The data block contains the pattern as
determined by the instrument. Each value in the pattern is a single byte. Values in the
pattern are the ASCII values for '0' and '1' (30 hex and 31 hex, respectively). The data
block is followed by a terminator character, 0A hex (linefeed). This query will return
an incomplete description of the pattern if all of the data needed to determine the pat-
tern has not yet been acquired.

This query produces an error if jitter signal type is set to clock signal.

Use the :MEASure:JITTer:DDJVsbit? query to return the DDJ values. Use the :MEASure:JIT-
Ter:EBITs? query to return the bit numbers.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

18-33

Measure Commands
JITTer:PJ?

Mode Jitter mode.

Returned Format [:MEASure:JITTer:PATTern] <value><NL>

JITTer:PJ?
Query :MEASure:JITTer:PJ?

This query returns the periodic jitter, PJ (δ-δ), value measured on the current source.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:MEASure:JITTer:PJ] <value><NL>
Example 10 OUTPUT 707;”:MEASure:JITTer:PJ?”

20 ENTER 707;Pj
30 PRINT Pj
40 END

JITTer:PJRMS?
Query :MEASure:JITTer:PJRMS?

This query returns the periodic jitter value, RJ (rms), measured on the current source.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:MEASure:JITTer:PJRMS] <value><NL>
Example 10 OUTPUT 707;”:MEASure:JITTer:PJRMS?”

20 ENTER 707;Pjrms
30 PRINT Pjrms
40 END

JITTer:RJ?
Query :MEASure:JITTer:RJ?

This query returns the random jitter value measured on the current source.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:MEASure:JITTer:RJ] <value><NL>
Example 10 OUTPUT 707;”:MEASure:JITTer:RJ?”

20 ENTER 707;Rj
30 PRINT Rj
40 END

18-34

Measure Commands
JITTer:SIGNal

JITTer:SIGNal
Command :MEASure:JITTer:SIGNal {CLOCk|DATA}

This command specifies the type of signal being measured.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Example :MEASure:JITTer:SIGNal DATA
Query :MEASure:JITTer:SIGNal?

This query returns the current setting for the signal type.

Returned Format [:MEASure:JITTer:SIGNal] {CLOCk|DATA}<NL>

JITTer:SIGNal:AUTodetect
Command :MEASure:JITTer:SIGNal:AUTodetect {ON|OFF}

This Jitter Mode command turns automatic detection of the signal type (clock or data)
on or off. The automatic detection occurs during an autoscale.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Example :MEASure:JITTer:SIGNal:AUTodetect ON
Query :MEASure:JITTer:SIGNal:AUTodetect?

This query returns the current setting for automatic signal detection.

Returned Format [:MEASure:JITTer:SIGNal:AUTodetect] {ON|OFF}<NL>

JITTer:TJ?
Query :MEASure:JITTer:TJ?

This query returns the total jitter value measured on the current source.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Returned Format [:MEASure:JITTer:TJ] <value><NL>
Example 10 OUTPUT 707;”:MEASure:JITTer:TJ?”

20 ENTER 707;Tj
30 PRINT Tj
40 END

18-35

Measure Commands
JITTer:UNITs

JITTer:UNITs
Command :MEASure:JITTer:UNITs {SECond|UINterval}

This command sets the units used for jitter mode measurements, seconds or unit inter-
val.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Mode Jitter mode.

Example :MEASure:JITTer:UNITs SEC
Query :MEASure:JITTer:UNITs?

This query returns the current setting for jitter mode measurement units.

Returned Format [:MEASure:JITTer:UNITs] {SEC|UIN}<NL>

NWIDth
Command :MEASure:NWIDth [<source>]

Measures the width of the first negative pulse on the screen using the mid-threshold
levels of the waveform (50% levels with standard measurements selected). The source
is specified with the MEASure:SOURce command or with the optional parameter fol-
lowing the NWIDth command.

 The algorithm is:

If the first edge on screen is rising, then

nwidth = time at the second rising edge – time at the first falling edge

else,

nwidth = time at the first rising edge – time at the first falling edge.

Mode Oscilloscope mode only

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}
<N> For channels: Value is dependent on the type of plug-in and its location in the instru-

ment. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2, 3, or 4.

Example The following example measures the width of the first negative pulse on screen.

10 OUTPUT 707;”:MEASURE:NWIDTH”
20 END

Query :MEASure:NWIDth? [<source>]
The query returns the measured width of the first negative pulse of the specified
source.

Returned Format [:MEASure:NWIDth] <value>[,<result_state>]<NL>
<value> The width of the first negative pulse on the screen using the mid-threshold levels of the

waveform.

18-36

Measure Commands
OVERshoot

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the current width of the first negative pulse on screen in
the numeric variable, Width, then prints the contents of the variable to the controller’s
screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:NWIDTH?”
30 ENTER 707;Width
40 PRINT Width
50 END

OVERshoot
Command :MEASure:OVERshoot [<source>]

This command measures the overshoot of the first edge on the screen. Sources are
specified with the MEASure:SOURce command or with the optional parameter follow-
ing the OVERshoot command.

The algorithm is:

If the first edge onscreen is rising, then

 overshoot = (Local Vmax - Vtop) / Vamplitude

else

 overshoot = (Vbase – Local Vmin) / Vamplitude.

Mode Oscilloscope mode only

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}
<N> For channels, functions, and waveform memories: 1, 2, 3, or 4.

Example This example measures the overshoot of the first edge onscreen.

10 OUTPUT 707;":MEASURE:OVERSHOOT"
20 END

Query :MEASure:OVERshoot? [<source>]
The query returns the measured overshoot of the specified source.

Returned Format [:MEASure:OVERshoot] <value>[,<result_state>]<NL>
<value> Ratio of overshoot to amplitude, in percent.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example This example places the current value of overshoot in the numeric variable, Value, then
prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:OVERSHOOT?"
30 ENTER 707;Value
40 PRINT Value
50 END

18-37

Measure Commands
PERiod

PERiod
Command :MEASure:PERiod [<source>]

This command measures the period of the first complete cycle on the screen using the
mid-threshold levels of the waveform (50% levels with standard measurements
selected). The source is specified with the MEASure:SOURce command or with the
optional parameter following the PERiod command.

The algorithm is:

If the first edge onscreen is rising then

 period = time at the second rising edge – time at the first rising edge

else

 period = time at the second falling edge – time at the first falling edge.

Mode Oscilloscope mode only

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}
<N> For channels, functions, and waveform memories: 1, 2, 3, or 4.

Example This example measures the period of the waveform.

10 OUTPUT 707;":MEASURE:PERIOD"
20 END

Query :MEASure:PERiod? [<source>]
The query returns the measured period of the specified source.

Returned Format [:MEASure:PERiod] <value>[,<result_state>]<NL>
<value> Period of the first complete cycle onscreen.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example This example places the current period of the waveform in the numeric variable, Value,
then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:PERIOD?"
30 ENTER 707;Value
40 PRINT Value
50 END

PWIDth
Command :MEASure:PWIDth [<source>]

Measures the width of the first positive pulse on the screen using the mid-threshold
levels of the waveform (50% levels with standard measurements selected). The source
is specified with the MEASure:SOURce command or with the optional parameter fol-
lowing the PWIDth command.

The algorithm is:

18-38

Measure Commands
RESults?

If the first edge on screen is rising, then

pwidth = time at the first falling edge – time at the first rising edge

else,

pwidth = time at the second falling edge – time at the first rising edge

Mode Oscilloscope mode only

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}
<N> For channels: Value is dependent on the type of plug-in and its location in the instru-

ment. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2, 3, or 4.

Example The following example measures the width of the first positive pulse on the screen.

10 OUTPUT 707;”:MEASURE:PWIDTH”
20 END

Query :MEASure:PWIDth? [<source>]
The query returns the measured width of the first positive pulse of the specified
source.

Returned Format [:MEASure:PWIDth] <value>[,<result_state>]<NL>
<value> Width of the first positive pulse on the screen in seconds.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the value of the width of the first positive pulse on the
screen in the numeric variable, Width, then prints the contents of the variable to the
controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:PWIDTH?”
30 ENTER 707;Width
40 PRINT Width
50 END

RESults?
Query :MEASure:RESults?

This query returns the results of the continuous measurements. The measurement
results always include only the current results. If SENDvalid is ON, the measurement
results state is returned immediately following the measurement result. Except in Jit-
ter Mode, the measurement results include the current, minimum, maximum, mean,
standard deviation, and statistical sample size of each measurement.

If more than one measurement is running continuously, the values shown in Table 18-3
on page 18-40 will be duplicated for each continuous measurement from the first to
last (top to bottom) of display. There may be up to four continuous measurements at a
time.

In Jitter Mode, the current result for up to four selected jitter measurements are
returned. In addition, if limit testing is turned on, limit failures, limit total tests, and
limit status values are returned.

18-39

Measure Commands
RESults?

Returned Format [:MEASure:RESults] <result list><NL>
<result list> A list of the measurement results, as in Table 18-2, separated with commas.

Example This example places the current results of the measurements in the string variable,
Result$, then prints the contents of the variable to the computer's screen.

10 DIM Result$[200] !Dimension variable
20 OUTPUT 707;":MEASURE:RESULTS?"
30 ENTER 707;Result$
40 PRINT Result$
50 END

Note: In some cases, remote results on statistical measurements may display incorrect ASCII
mapping, such as a ç symbol in lieu of Σ (sigma).

Table 18-2. Results Values

Sendvalid OFF Sendvalid ON

Limit test OFF current result current result

validity

minimum a

a. This value is not returned in Jitter Mode. Instead, the measurement result 9.99999E+37 is returned.

minimum a

maximum a maximum a

mean a mean a

standard deviation a standard deviation a

n-samples a n-samples a

Limit test ON current result current result

validity

minimum a minimum a

maximum a maximum a

mean a mean a

standard deviation a standard deviation a

n-samples a n-samples a

limit failures limit failures

limit total tests limit total tests

limit status limit status

18-40

Measure Commands
RESults?

Table 18-3. Result States

Code Result Description

0 RESULT_CORRECT Result correct. No problem found.
1 RESULT_QUESTIONABLE Result questionable but could be measured.
2 RESULT_LESS_EQ Result less than or equal to value returned.
3 RESULT_GTR_EQ Result greater than or equal to value returned.
4 RESULT_INVALID Result returned is invalid.
5 EDGE_NOT_FOUND Result invalid. Required edge not found.
6 MAX_NOT_FOUND Result invalid. Max not found.
7 MIN_NOT_FOUND Result invalid. Min not found.
8 TIME_NOT_FOUND Result invalid. Requested time not found.
9 VOLT_NOT_FOUND Result invalid. Requested voltage not found.
10 TOP_EQUALS_BASE Result invalid. Top and base are equal.
11 MEAS_ZONE_SMALL Result invalid. Measurement zone too small.
12 LOWER_INVALID Result invalid. Lower threshold not on waveform.
13 UPPER_INVALID Result invalid. Upper threshold not on waveform.
14 UPPER_LOWER_INVALID Result invalid. Upper and lower thresholds are too close.
15 TOP_INVALID Result invalid. Top not on waveform.
16 BASE_INVALID Result invalid. Base not on waveform.
17 INCOMPLETE Result invalid. Completion criteria not reached.
18 INVALID_SIGNAL Result invalid. Measurement invalid for this type of signal.
19 SIGNAL_NOT_DISPLAYED Result invalid. Signal is not displayed.
20 CLIPPED_HIGH Result invalid. Waveform is clipped high.
21 CLIPPED_LOW Result invalid. Waveform is clipped low.
22 CLIPPED_HIGH_LOW Result invalid. Waveform is clipped high and low.
23 ALL_HOLES Result invalid. Data contains all holes.
24 NO_DATA Result invalid. No data on screen.
25 CURSOR_OFF_SCREEN Result invalid. Cursor is not on screen.
26 MEASURE_CANCELLED Result invalid. Measurement aborted.
27 MEASURE_TIMEOUT Result invalid. Measurement timed-out.
28 NO_MEAS Result invalid. No measurement to track.
30 INVALID_EYE Result invalid. Eye pattern not found.
32 BAD_DARK_LEVEL Result invalid. Dark level is invalid.
33 NOT_1_SOURCE Result invalid. Color grade/gray scale database has more

than one source.
34 NO_REF_PLANE Result invalid. No RZ eye pattern found.
35 BAD_RZ Result invalid. Excessive extinction ratio correction.
37 BAD_ER_CORR Result invalid. No TDR/TDT reference plane defined.

18-41

Measure Commands
RISetime

RISetime
Command :MEASure:RISetime [<source>]

This command measures the rise time of the first displayed edge by measuring the time
at the lower threshold of the rising edge, measuring the time at the upper threshold of
the rising edge, then calculating the rise time with the following algorithm:

 Rise time = time at upper threshold point – time at lower threshold point.

Sources are specified with the MEASure:SOURce command or with the optional
parameter following the RISetime command.

Mode All instrument modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N> | CGRade}
Where CHANnel<N>, FUNCtion<N>, RESPonse<N>, and WMEMory<N> apply in
Oscilloscope and TDR modes only, and CGRade in Eye mode only.

<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

With standard measurements selected, the lower threshold is at the 10% point and the
upper threshold is at the 90% point on the rising edge.

Example This example measures the rise time of the displayed signal.

10 OUTPUT 707;":MEASURE:RISETIME"
20 END

Query :MEASure:RISetime? [<source>]
The query returns the rise time of the specified source.

Returned Format [:MEASure:RISetime] <value>[,<result_state>]<NL>
<value> Rise time in seconds.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example This example places the current value of rise time in the numeric variable, Rise, then
prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":MEASURE:RISETIME?"
30 ENTER 707;Rise
40 PRINT Rise
50 END

SCRatch
Command :MEASure:SCRatch

This command clears the measurement results from the screen.

Example This example clears the current measurement results from the screen.

10 OUTPUT 707;":MEASURE:SCRATCH"
20 END

18-42

Measure Commands
SENDvalid

SENDvalid
Command :MEASure:SENDvalid {{OFF | 0} | {ON | 1}}

This command enables the result state code to be returned with the :MEA-
Sure:RESults? query.

Example This example turns send valid function on.

10 OUTPUT 707;":MEASURE:SENDVALID ON"
20 END

Query :MEASure:SENDvalid?
The query returns the state of the Sendvalid control.

Returned Format [:MEASure:SENDvalid] {0 | 1}<NL>
Example This example places the current mode for SENDvalid in the string variable, Mode$,

then prints the contents of the variable to the computer's screen.

10 DIM Mode$[50] !Dimension variable
20 OUTPUT 707;":MEASURE:SENDVALID?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

See Also Refer to the MEASure:RESults query for information on the results returned and how
they are affected by the SENDvalid command. Refer to the individual measurements
for information on how the result state is returned.

SOURce
Command :MEASure:SOURce <source>[,<source>]

This command selects the source for measurements. You can specify one or two
sources with this command. All measurements except MEASure: DEFine:DELTatime
are made on the first specified source. The delta time measurement uses two sources if
two are specified. If only one source is specified, the delta time measurement uses that
source for both of its parameters. The source is always color grade/gray scale data in
eye mode, except for average optical power and histogram measurements.

This is a global definition. It is used for all subsequent remote measurements unless a
different source is specified with the optional source parameter in the measure com-
mand.

Mode Oscilloscope and TDR modes. Eye mode uses this for average optical power measure-
ments.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}
<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

Example This example selects channel 1 as the source for measurements.

10 OUTPUT 707;":MEASURE:SOURCE CHANNEL1"
20 END

18-43

Measure Commands
TEDGe?

Query :MEASure:SOURce?
The query returns the current source selection.

Returned Format [:MEASure:SOURce] <source>[,<source>]<NL>
Example This example places the currently specified sources in the string variable, Source$,

then prints the contents of the variable to the computer's screen.

10 DIM Source$[50] !Dimension variable
20 OUTPUT 707;":MEASURE:SOURCE?"
30 ENTER 707;Source$
40 PRINT Source$
50 END

TEDGe?
Query :MEASure:TEDGe? <meas_thres_txt>,<slope><occurrence> [,<source>]

The query returns the time interval between the trigger event and the specified edge
(threshold level, slope, and transition) in oscilloscope mode. The query will return the
time interval between the reference plane and the specified edge in TDR mode.

Mode Oscilloscope and TDR modes.

<meas_thres_txt> UPPer, MIDDle, or LOWer to identify the threshold.

<slope> { – (minus) for falling | + (plus) for rising | <none> (the slope is optional; if no slope is
specified, + (plus) is assumed) }

<occurrence> A numeric value representing the edge of the occurrence. The desired edge must be
present on the display. Edges are counted with 1 being the first edge from the left on
the display.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}
<N> For channels, functions, TDR responses and waveform memories 1, 2, 3, or 4.

Returned Format [:MEASure:TEDGe] <time>[,<result_state>]<NL>
<time> The time interval between the trigger event and the specified edge (oscilloscope

mode) or the time interval between the reference plane and the specified edge in TDR
mode.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example This example returns the time interval between the trigger event and the 90% thresh-
old on the second rising edge of the source waveform to the numeric variable, Time.
The contents of the variable are then printed to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off

Note

TEDGe is measured for a value less than or equal to 20. A value greater than 20 returns data out of
range.

18-44

Measure Commands
TMAX

20 OUTPUT 707;":MEASURE:TEDGE? UPPER,+2"
30 ENTER 707;Time
40 PRINT Time
50 END

TMAX
Command :MEASure:TMAX [<source>]

This command measures the first time at which the first maximum voltage of the
source waveform occurred. The source is specified with the MEASure:SOURce com-
mand or with the optional parameter following the TMAX command. In TDR mode, the
time reported is measured with respect to the reference plane.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}
<N> An integer, from 1 through 4.

Query :MEASure:TMAX? [<source>]
The query returns the time at which the first maximum voltage occurred.

Returned Format [:MEASure:TMAX] <time>[,<result_state>]<NL>
<time> Time at which the first maximum voltage occurred.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the time at which the first maximum voltage occurred
to the numeric variable, Time, then prints the contents of the variable to the control-
ler’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:TMAX?”
30 ENTER 707;Time
40 PRINT Time
50 END

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the headers
may cause misinterpretation of returned data.

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the headers
may cause misinterpretation of returned data.

18-45

Measure Commands
TMIN

TMIN
Command :MEASure:TMIN [<source>]

This command measures the first time at which the first minimum voltage of the source
waveform occurred. The source is specified with the MEASure:SOURce command or
with the optional parameter following the TMIN command. In TDR mode, the time
reported is measured with respect to the reference plane.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}
<N> An integer, from 1 through 4.

Query :MEASure:TMIN? [<source>]
The query returns the time at which the first minimum voltage occurred.

Returned Format [:MEASure:TMIN] <time>[,<result_state>]<NL>
<time> Time at which the first minimum voltage occurred.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the time at which the first minimum voltage occurred to
the numeric variable, Time, then prints the contents of the variable to the controller’s
screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:TMIN?”
30 ENTER 707;Time
40 PRINT Time
50 END

TVOLt?
Query :MEASure:TVOLt? <voltage>,<slope><occurrence>[,<source>]

The query returns the time interval between the trigger event and the specified voltage
level and transition (oscilloscope mode) or the time interval between the reference
plane and the specified voltage level and transition (TDR mode). The source is speci-
fied with the MEASure:SOURce command or with the optional parameter following the
TVOLt? query.

Mode Oscilloscope and TDR modes.

<voltage> Voltage level at which time will be measured.

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the headers
may cause misinterpretation of returned data.

18-46

Measure Commands
VAMPlitude

<slope> The direction of the waveform change when the specified voltage is crossed, rising (+)
or falling (–).

<occurrence> The number of the crossing to be reported. If one, the first crossing is reported; if two,
the second crossing is reported, and so on.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}
<N> An integer, from 1 through 4.

Returned Format [:MEASure:TVOLt] <time>[,<result_state>]<NL>
<time> The time interval between the trigger event (or reference plane, in TDR mode) and the

specified voltage level and transition.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the time interval between the trigger event and the
transition through –.250 Volts on the third rising edge of the source waveform to the
numeric variable, Time. The contents of the variable are then printed to the controller’s
screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:TVOLT? -.250,+3”
30 ENTER 707;Time
40 PRINT Time
50 END

VAMPlitude
Command :MEASure:VAMPlitude [<source>]

This command calculates the difference between the top and base voltage of the speci-
fied source. Sources are specified with the MEASure:SOURce command or with the
optional parameter following the VAMPlitude command.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}
<N> For channels, functions, TDR responses and waveform memories: 1, 2, 3, or 4.

Example This example calculates the difference between the top and base voltage of the speci-
fied source.

10 OUTPUT 707;":MEASURE:VAMPLITUDE"
20 END

Query :MEASure:VAMPlitude? [<source>]

Turn Off Headers

When receiving numeric data into numeric variables, turn off the headers. Otherwise, the headers
may cause misinterpretation of returned data.

18-47

Measure Commands
VAVerage

The query returns the calculated difference between the top and base voltage of the
specified source.

Returned Format [:MEASure:VAMPlitude] <value>[,<result_state>]<NL>
<value> Calculated difference between the top and base voltage.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example This example places the current Vamplitude value in the numeric variable, Value, then
prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:VAMPLITUDE?"
30 ENTER 707;Value
40 PRINT Value
50 END

VAVerage
Command :MEASure:VAVerage {CYCLe | DISPlay} [,<source>]

This command calculates the average voltage over the displayed waveform. The source
is specified with the MEASure:SOURce command or with the optional parameter fol-
lowing the VAVerage command.

Mode Oscilloscope and TDR (DISPlay option only) modes.

CYCLe The CYCLe parameter instructs the average measurement to measure the average volt-
age across the first period of the display. This option is valid in oscilloscope mode only.

DISPlay The DISPlay parameter instructs the average measurement to measure all the data on
the display. This option is valid in both oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N> | RESPonse<N>}
<N> An integer, from 1 through 4.

Example The following example calculates the average voltage over the displayed waveform.

10 OUTPUT 707;”:MEASURE:VAVERAGE DISPLAY”
20 END

Query :MEASure:VAVerage? {CYCLe | DISPlay}, [<source>]
The query returns the calculated average voltage of the specified source.

Returned Format [:MEASure:VAVerage] <value> [,<result_state>]<NL>
<value> The calculated average voltage.

<result_state> If SENDVALID is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example 10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VAVERAGE? DISPLAY”
30 ENTER 707;Average
40 PRINT Average
50 END

18-48

Measure Commands
VBASe

VBASe
Command :MEASure:VBASe [<source>]

Measures the statistical base of the waveform. The source is specified with the MEA-
Sure:SOURce command or with the optional parameter following the VBASe command.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}
<N> For channels: Value is dependent on the type of plug-in and its location in the instru-

ment. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2, 3, or 4. For
TDR responses: 1, 2, 3, or 4.

Example The following example measures the voltage at the base of the waveform.

10 OUTPUT 707;”:MEASURE:VBASE”
20 END

Query :MEASure:VBASe? [<source>]
The query returns the measured voltage value at the base of the specified source.

Returned Format [:MEASure:VBASe] <value>[,<result_state>]<NL>
<value> Voltage at the base of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the current voltage at the base of the waveform to the
numeric variable, Voltage, then prints the contents of the variable to the controller’s
screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VBASE?”
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

VMAX
Command :MEASure:VMAX [<source>]

Measures the absolute maximum voltage present on the selected source waveform.
The source is specified with the MEASure:SOURce command or with the optional
parameter following the VMAX command.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}
<N> For channels: Value is dependent on the type of plug-in and its location in the instru-

ment. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2, 3, or 4. For
TDR responses: 1, 2, 3, or 4.

Example The following example measures the absolute maximum voltage on the waveform.

18-49

Measure Commands
VMIN

10 OUTPUT 707;”:MEASURE:VMAX”
20 END

Query :MEASure:VMAX? [<source>]
The query returns the measured absolute maximum voltage present on the selected
source waveform.

Returned Format [:MEASure:VMAX] <value>[,<result_state>]<NL>
<value> Absolute maximum voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the measured absolute maximum voltage on the wave-
form to the numeric variable, Maximum, then prints the contents of the variable to the
controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VMAX?”
30 ENTER 707;Maximum
40 PRINT Maximum
50 END

VMIN
Command :MEASure:VMIN [<source>]

Measures the absolute minimum voltage present on the selected source waveform. The
source is specified with the MEASure:SOURce command or with the optional parame-
ter following the VMIN command.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}
<N> For channels: Value is dependent on the type of plug-in and its location in the instru-

ment. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2, 3, or 4. For
TDR responses: 1, 2, 3, or 4.

Example The following example measures the absolute minimum voltage on the waveform.

10 OUTPUT 707;”:MEASURE:VMIN”
20 END

Query :MEASure:VMIN? [<source>]
The query returns the measured absolute minimum voltage present on the selected
source waveform.

Returned Format [:MEASure:VMIN] <value>[,<result_state>]<NL>
<value> Absolute minimum voltage present on the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example returns the measured absolute minimum voltage on the wave-
form to the numeric variable, Minimum, then prints the contents of the variable to the
controller’s screen.

18-50

Measure Commands
VPP

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VMIN?”
30 ENTER 707;Minimum
40 PRINT Minimum
50 END

VPP
Command :MEASure:VPP [<source>]

This command measures the maximum and minimum voltages on the selected source,
then calculates the peak-to-peak voltage as the difference between the two voltages.
Sources are specified with the MEASure:SOURce command or with the optional
parameter following the VPP command.

Mode Oscilloscope and TDR modes only

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}
<N> An integer, from 1 through 4.

Example This example measures the peak-to-peak voltage.

10 OUTPUT 707;":MEASURE:VPP"
20 END

Query :MEASure:VPP? [<source>]
The query returns the specified source peak-to-peak voltage.

Returned Format [:MEASure:VPP] <value>[,<result_state>]<NL>
<value> Peak-to-peak voltage of the selected source.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example This example places the current peak-to-peak voltage in the numeric variable, Voltage,
then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:VPP?"
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

VRMS
Command :MEASure:VRMS {CYCLe | DISPlay}, {AC | DC} [,<source>]

This command measures the RMS voltage of the selected waveform by subtracting the
average value of the waveform from each data point on the display. Sources are speci-
fied with the MEASure:SOURce command or with the optional parameter following the
VRMS command.

Mode Oscilloscope mode only.

18-51

Measure Commands
VTIMe?

CYCLe The CYCLe parameter instructs the RMS measurement to measure the RMS voltage
across the first period of the display.

DISPlay The DISPLay parameter instructs the RMS measurement to measure all the data on the
display. Generally, RMS voltage is measured across one waveform or cycle, however,
measuring multiple cycles may be accomplished with the DISPLay option. The DISPlay
parameter is also useful when measuring noise.

AC The AC parameter is used to measure the RMS voltage subtracting out the DC compo-
nent.

DC The DC parameter is used to measure RMS voltage including the DC component.

The AC RMS, DC RMS, and VAVG parameters are related as in the following formula:

DCVRMS2 = ACVRMS2 + VAVG2

<source> {CHANnel<N> | FUNCtion<N> | WMEMory<N>}
<N> For channels, functions, and waveform memories: 1, 2, 3, or 4.

Example This example measures the RMS voltage of the previously selected waveform.

10 OUTPUT 707;":MEASURE:VRMS CYCLE,AC"
20 END

Query :MEASure:VRMS? {CYCLe | DISplay}, {AC | DC} [,<source>]
The query returns the RMS voltage of the specified source.

Returned Format [:MEASure:VRMS] <value>[,<result_state>]<NL>
<value> RMS voltage of the selected waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example This example places the current AC RMS voltage over one period of the waveform in
the numeric variable, Voltage, then prints the contents of the variable to the com-
puter’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":MEASURE:VRMS? CYCLE,AC"
30 ENTER 707;Voltage
40 PRINT Voltage
50 END

VTIMe?
Query :MEASure:VTIMe? <time> [,<source>]

The query returns the measured voltage.
<time> The time interval between the trigger event and the specified edge (oscilloscope

mode) or the time interval between the reference plane and the specified edge in TDR
mode.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}

<N> An integer, from 1 to 4.

18-52

Measure Commands
VTOP

Mode Oscilloscope and TDR modes.

Returned Format [:MEASure:VTIMe] <value>[,<result_state>]<NL>
<value> Voltage at the specified time. In oscilloscope mode, <time> is the time measured from

the trigger event. In TDR mode, <time> is measured with respect to the reference
plane.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the voltage at 500 ms in the numeric variable, Value, then
prints the contents to the controller’s screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VTIME? 500E–3”
30 ENTER 707;Value
40 PRINT Value
50 END

VTOP
Command :MEASure:VTOP [<source>]

This command measures the statistical top of the selected source waveform. The
source is specified with the MEASure:SOURce command or with the optional parame-
ter following the VTOP command.

Mode Oscilloscope and TDR modes.

<source> {CHANnel<N> | FUNCtion<N> | RESPonse<N> | WMEMory<N>}
<N> For channels: Value is dependent on the type of plug-in and its location in the instru-

ment. For functions: 1 or 2. For waveform memories (WMEMORY): 1, 2, 3, or 4. For
TDR responses: 1, 2, 3, or 4.

Example The following example measures the voltage at the top of the waveform.

10 OUTPUT 707;”:MEASURE:VTOP”
20 END

Query :MEASure:VTOP? [<source>]
The query returns the measured voltage at the top of the specified source.

Returned Format [:MEASure:VTOP] <value>[,<result_state>]<NL>
<value> Voltage at the top of the waveform.

<result_state> If SENDvalid is ON, the result state is returned with the measurement result. Refer to
Table 18-3 on page 18-40 for a list of the result states.

Example The following example places the value of the voltage at the top of the waveform in the
numeric variable, Value, then prints the contents of the variable to the controller’s
screen.

10 OUTPUT 707;”:SYSTEM:HEADER OFF” !Response headers off
20 OUTPUT 707;”:MEASURE:VTOP?”
30 ENTER 707;Value
40 PRINT Value
50 END

19

DCALib 19-2
PRESet 19-3
RATE 19-3
RESPonse 19-4
RESPonse:CALibrate 19-5
RESPonse:CALibrate:CANCel 19-5
RESPonse:CALibrate:CONTinue 19-6
RESPonse:HORizontal 19-6
RESPonse:HORizontal:POSition 19-7
RESPonse:HORizontal:RANGe 19-7
RESPonse:RISetime 19-8
RESPonse:TDRDest 19-9
RESPonse:TDRTDT 19-9
RESPonse:TDTDest 19-10
RESPonse:VERTical 19-11
RESPonse:VERTical:OFFSet 19-12
RESPonse:VERTical:RANGe 19-12
STIMulus 19-13

TDR/TDT Commands

19-2

TDR/TDT Commands
DCALib

TDR/TDT Commands

The TDR/TDT command subsystem includes all commands necessary to set up TDR/
TDT measurements.

Slot Selection All of the TDR/TDT subsystem commands are of the form :TDR{2 | 4}:<command>. The
{2 | 4} option is used to identify the slot in which you have installed the TDR/TDT plug-
in module. Select 2 if the module is in slots 1 and 2; 4 if the module is in slots 3 and 4.
For example, if the module is in slots 3 and 4, and you want to issue the TDR sub-
system PRESet command, you use the command string :TDR4:PRESET.

DCALib
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:DCALib {RPCalib | NORMal | QNORmal}
This command allows you to select the type of differential normalization (or calibra-
tion) to be performed. In TDT mode, the NORMal and QNORmal procedures are equiv-
alent; only the NORMal parameter is recognized.

RPCalib Selects reference plane calibration. This option is provided for backward compatibility.

NORMal Sets the calibration procedure to differential normalization. This version of the differ-
ential normalization procedure models the coupling between the test fixture channels,
and compensates for its effects.

QNORmal Sets the calibration procedure to differential normalization. This version of the differ-
ential normalization procedure, also known as “Quick Normalization”, assumes that the
coupling between the test fixture channels is negligible.

Example The following example selects the quick normalization procedure.

10 OUTPUT 707;":TDR2:DCAL QNOR"
20 END

Query :TDR{2 | 4}:DCALib?
The query returns the select calibration mode.

Returned Format [:TDR{2 | 4}:DCAL] {RPCalib | NORMal | QNORmal}<NL>

19-3

TDR/TDT Commands
PRESet

PRESet
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:PRESet
This command performs an automatic set up of the instrument for TDR or TDT mea-
surements, based on the stimulus. This command does the following:

• Turn on TDR channels.

• If the stimulus is set to EXT ernal (see “STIMulus” on page 19-13), turn off
channel 1 or 3 and turn on channel 2 or 4.

• If the TDT destinations are not shown, turn on the TDT destination channels.
(see “RESPonse:TDTDest” on page 19-10).

• Set the timebase to 500 ps/div and positions the incident edge on screen.

• Turn on averaging and set best flatness (see “Acquire Commands” in chapter
6).

• For all channels that are on:

• Set the attenuation units to ratio.
• Set the attenuation to 1:1.
• Set the bandwidth to low (12.4 GHz). (Set high for external stimulus.)
• Set the units to volts.
• Set the channel scale to 100 mV/div.
• Set the channel offset to 200 mV or –200 mV for differential stimulus.

Example The following example presets the instrument for TDR/TDT operations.

10 OUTPUT 707;":TDR2:PRESET"
20 END

RATE
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RATE {AUTO | <rate>}
This command sets the period of the TDR pulse generator. You should usually leave
this set to AUTO unless you need to define a specific rate. In AUTO, the instrument will
attempt to keep subsequent periods off screen when the timebase is changed.

<rate> Period to which you want to set the generator, in Hertz. You can add a suffix to indicate
that the rate is in Hertz (HZ, KHZ, and so on).

Example The following example sets the pulse generator to 120 kHz.

10 OUTPUT 707;":TDR2:RATE 120 KHZ"
20 END

19-4

TDR/TDT Commands
RESPonse

Query :TDR{2 | 4}:RATE?
The query returns the current period of the pulse generator, even when the control is
set to AUTO.

The query is allowed in all modes.

Returned Format [:TDR{2 | 4}:RATE] {AUTO | <rate>}<NL>
Example The following example gets the current rate setting and stores it in the variable Rate$,

then prints the contents of the variable to the controller’s screen.

10 DIM Rate$[30]
20 OUTPUT 707;":TDR2:RATE?"
30 ENTER 707;Rate$
40 PRINT Rate$
50 END

RESPonse
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N> {ON | 1 | OFF | 0 | DIFFerential | COMMonmode | INDividual}
This command turns on or off a TDR or TDT normalized response.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

OFF Turns off the response for the specified stimulus.

ON Turns on the normalized response of the channel.

DIFFerential Turns on the differential response.

COMMonmode Turns on the common mode response.

INDividual Turns on the response for the corresponding channel. This option is valid for responses
computed by the differential normalization procedure, as set by commands :TDR {2 |
4}:DCALib:NORMal or :TDR {2 | 4}:DCALib:QNORmal.

Example The following example turns on common mode response on response 1.

10 OUTPUT 707;":TDR2:RESPONSE1 COMMONMODE"
20 END

Query :TDR{2 | 4}:RESPonse<N>?
The query returns the current response setting for the specified stimulus.

The query is allowed in all modes.

Note

The keyword NORMalize may also be used. This command is compatible with the Agilent 83480/
54750 and is equivalent to ON.

19-5

TDR/TDT Commands
RESPonse:CALibrate

Returned Format [:TDR{2 | 4}:RESPonse<N>] {OFF | DIFFerential | COMMonmode | INDividual | ON}<NL>
Example The following example gets the current response setting for response 2, stores it in the

variable Control$, then prints the contents of the variable to the controller’s screen.

10 DIM Control$[20]
20 OUTPUT 707;":TDR2:RESPONSE2?"
30 ENTER 707;Control
40 PRINT Control
50 END

RESPonse:CALibrate
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:CALibrate
This command begins a TDR or TDT normalization and reference plane calibration.
Which calibration is done (TDR or TDT) depends on the setting of the TDRTDT con-
trol. See “RESPonse:TDRTDT” on page 19-9.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

Example The following example begins a TDR or TDT calibration.

10 OUTPUT 707;":TDR2:RESPONSE1:CALIBRATE"
20 END

RESPonse:CALibrate:CANCel
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:CALibrate:CANCel
This command activates the cancel softkey during a TDR or TDT normalization and
reference plane calibration.

This command is retained for backward compatibility with the 83480/54750. The pre-
ferred command is :CALibrate:CANCel.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

Example The following example cancels the current calibration operation.

10 OUTPUT 707;":TDR2:RESPONSE1:CALIBRATE:CANCEL"
20 END

19-6

TDR/TDT Commands
RESPonse:CALibrate:CONTinue

RESPonse:CALibrate:CONTinue
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:CALibrate:CONTinue
This command activates the continue softkey during a TDR or TDT normalization and
reference plane calibration.

This command is retained for backward compatibility with the 83480/54750. The pre-
ferred command is :CALibrate:CONTinue.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

Example The following example continues a paused calibration operation.

10 OUTPUT 707;":TDR2:RESPONSE1:CALIBRATE:CONTINUE"
20 END

RESPonse:HORizontal
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:HORizontal {AUTO | MANual}
This command specifies whether the TDR/TDT response should automatically track
the source channel’s horizontal scale (AUTO), or a user-defined scale specified with
the HORizontal:POSItion and HORizontal:RANGe commands (MANual). AUTO is the
usual setting.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

Example The following example sets TDR response 1 to automatically track the source channel’s
horizontal scale:

10 OUTPUT 707;":TDR2:RESPONSE1:HORIZONTAL AUTO"
20 END

Query :TDR{2 | 4}:RESPonse<N>:HORizontal?
The query returns the current horizontal tracking mode for the specified response.

Returned Format [:TDR{2 | 4}:RESPonse<N>:HORizontal] {AUTO | MANual}<NL>

Note

The keyword TSOurce may also be used. This command is compatible with the Agilent 83480/
54750 and is equivalent to AUTO.

19-7

TDR/TDT Commands
RESPonse:HORizontal:POSition

Example The following example gets the current horizontal tracking mode for response 1, puts it
in the variable Track$, then prints the contents of the variable to the controller’s
screen:

10 DIM Track$[20]
20 OUTPUT 707;":TDR2:RESPONSE1:HORIZONTAL?"
30 ENTER 707;Track$
40 PRINT Track$
50 END

RESPonse:HORizontal:POSition
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:HORizontal:POSition <position>
This command specifies the horizontal position of the TDR/TDT response when hori-
zontal tracking is set to manual. The position is always referenced to center screen.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

<position> Offset from the center of the screen, in seconds.

Example The following example sets the horizontal position for response 1 to 20 ns. This
assumes that manual tracking has already been selected.

10 OUTPUT 707;":TDR2:RESPONSE1:HORIZONTAL:POSITION 20E9"
20 END

Query :TDR{2 | 4}:RESPonse<N>:HORizontal:POSition?
The query returns the current horizontal position setting for the specified response.

Returned Format [:TDR{2 | 4}:RESPonse<N>:HORizontal:POSition] <position><NL>
Example The following example gets the current horizontal position setting for response 1, puts

it into the variable Pos$, then prints the contents of the variable to the controller’s
screen.

10 DIM Pos$[20]
20 OUTPUT 707;":TDR2:RESPONSE1:HORIZONTAL:POSITION?"
30 ENTER 707;Pos$
40 PRINT Pos$
50 END

RESPonse:HORizontal:RANGe
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:HORizontal:RANGe <range>
This command specifies the range of the TDR/TDT response when the horizontal
tracking is set to manual.

19-8

TDR/TDT Commands
RESPonse:RISetime

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

<range> Horizontal range in seconds.

Example The following example sets the horizontal range for TDR response 1 to 120 ms. This
assumes that manual tracking has already been selected.

10 OUTPUT 707;":TDR2:RESPONSE1:HORIZONTAL:RANGE 120 MS"
20 END

Query :TDR{2 | 4}:RESPonse<N>:HORizontal:RANGe?
The query returns the current horizontal range setting for the specified response.

Returned Format [:TDR{2 | 4}:RESPonse<N>:HORizontal:RANGe] <range><NL>
Example The following example gets the current horizontal range setting for response 2, stores

it in the numeric variable Range, then prints the contents of the variable to the control-
ler’s screen.

10 OUTPUT 707;":TDR2:RESPONSE2:HORIZONTAL:RANGE?"
20 ENTER 707;Range
30 PRINT Range
40 END

RESPonse:RISetime
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:RISetime <risetime>
This command sets the risetime for the normalized response. The risetime setting is
limited by the timebase settings and the record length. The normalize response func-
tion allows you to change the risetime of the normalized step.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

<risetime> Risetime setting in seconds. The Risetime function allows you to change the normal-
ized step’s risetime within a range of values, with bounds established by the current
timebase and record length settings.

While the TDR step’s risetime applied to the system under test is fixed, the measured
response has a set of mathematical operations applied to it. These mathematical opera-
tions effectively change the displayed response to the system just as if a different TDR
step risetime had actually been applied. This allows you to select a risetime for TDR/
TDT measurements that is close to the actual risetime used in your system. This rise-
time value applies to both TDR and TDT normalized channels.

Example The following example sets the risetime for response 1 to 100 ps.

10 OUTPUT 707;"TDR2:RESPONSE1:RISETIME 100 PS"

19-9

TDR/TDT Commands
RESPonse:TDRDest

20 END
Query :TDR{2 | 4}:RESPonse<N>:RISetime?

The query returns the normalized response risetime setting.

Returned Format [:TDR{2 | 4}:RESPonse<N>:RISetime] <risetime><NL>
Example The following example gets the current risetime setting and stores it in the numeric

variable Risetime, then prints the contents of the variable to the controller’s screen.

10 OUTPUT 707;":TDR2:RESPONSE1:RISETIME?"
20 ENTER 707;Risetime
30 PRINT Risetime
40 END

RESPonse:TDRDest
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse{1 | 3}:TDRDest CHANnel<N>
This command selects a TDR destination channel for an external stimulus. When you
use an external stimulus, you must use this command to specify where the TDR chan-
nel is coming into the instrument. An external stimulus may be generated from chan-
nels 1 or 3 only.

A channel is valid as a TDR destination if it meets the following criteria:

• Must be an electrical channel.
• Must not have an active TDR stimulus.
• Must not be the destination of a TDT measurement.

<N> An integer, 1 through 4.

Example The following example sets channel 2 as the TDR destination channel for response 1:

10 OUTPUT 707;":TDR2:RESPONSE1:TDRDEST CHANNEL2"
20 END

Query :TDR{2 | 4}:RESPonse{1 | 3}:TDRDest?
The query returns the current TDR destination channel for the selected response.

Returned Format [:TDR{2 | 4}:RESPonse{1 | 3}:TDRDest] <channel><NL>
Example The following example gets the current TDR destination channel for response 3, stores

it in the variable Dest$, then prints the contents of the variable to the controller’s
screen:

10 DIM Dest$[20]
20 OUTPUT 707;":TDR2:RESPONSE3:TDRDEST?"
30 ENTER 707;Dest$
40 PRINT Dest$
50 END

RESPonse:TDRTDT
This command is used in TDR/TDT mode only.

19-10

TDR/TDT Commands
RESPonse:TDTDest

Command :TDR{2 | 4}:RESPonse{1| 2| 3 | 4}:TDRTDT {TDR | TDT}
This command controls the behavior of other :TDR{2| 4}:RESPonse commands and
queries. A response waveform is fully specified by the TDRTDT setting, as well as by
the stimulus value that is part of a “TDR{2 | 4}:RESPonse” command.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

Example To turn on Response 1 waveform as TDR with stimulus = Chan1:

Set :TDR2:RESPonse1:TDRTDT to TDR
Set :TDR2:RESPonse1 to NORM

To turn on Response 2 waveform as TDT with stimulus = Chan1:

Set :TDR2:RESPonse1:TDTDest to Chan2
Set :TDR2:RESPonse1:TDRTDT to TDT
Set :TDR2:RESPonse1 to ON

RESPonse:TDTDest
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:TDTDest {NONE | CHANnel<N>}
This command selects a destination channel for a normalization measurement.

<N> An integer, 1 through 4. This RESPonse<N> value refers to the stimulus channel used
to produce a response waveform, while the response waveforms are numbered based
on the destination channel. For TDR commands, the response waveform numbers and
RESPonse<N> refer to the same waveforms. This is not the case for TDT related com-
mands.

For differential and common mode stimuli, the TDT destination is implied as follows:

• The TDT destination for channel 1 is channel 3.
• The TDT destination for channel 2 is channel 4.
• The TDT destination for channel 3 is channel 1.
• The TDT destination for channel 4 is channel 2.

A channel is valid as a TDT destination if it meets the following criteria:

• Must be an electrical channel.
• Must not have an active TDR stimulus.
• Must not be the destination of another TDT measurement.
• Must not be the destination of a TDR measurement (external stimulus only).

You must select a valid TDT destination before setting the TDRTDT control to
TDT.

19-11

TDR/TDT Commands
RESPonse:VERTical

NONE Deselects a channel as a TDT destination. This frees the channel to be the TDT desti-
nation of another TDR source.

<N> For CHANnel<N>, this value is an integer, 1 through 4, indicating the slot in which the
channel resides, followed by an optional A or B identifying which of two possible chan-
nels in the slot is being referenced.

Example The following example selects channel 3 as the TDT destination channel for response
4.

10 OUTPUT 707;":TDR2:RESPONSE4:TDTDEST CHANNEL3"
20 END

Query :TDR{2 | 4}:RESPonse<N>:TDTDest?
The query returns the current TDT destination channel for the specified response.

Returned Format [:TDR{2 | 4}:RESPonse<N>:TDTDest] {NONE | <channel>}<NL>
Example The following example gets the TDT destination channel for response 1, puts it in the

variable Dest$, then prints the contents of the variable to the controller’s screen.

10 DIM Dest$[20]
20 OUTPUT 707;":TDR2:RESPONSE1:TDTDEST?"
30 ENTER 707;Dest$
40 PRINT Dest$
50 END

RESPonse:VERTical
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:VERTical {AUTO | MANual}
This command specifies whether the TDR/TDT response should automatically track
the source channel’s vertical scale (AUTO), or use a user-defined scale specified with
the VERTical:OFFSet and VERTical:RANGe commands (MANual). AUTO is the usual
setting.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

Example The following example sets response 1 to use a user-defined vertical scale.

10 OUTPUT 707;":TDR2:RESPONSE1:VERTICAL MANUAL"
20 END

Query :TDR{2 | 4}:RESPonse<N>:VERTical?
The query returns the current vertical tracking mode for the specified response.

Note

The keyword TSOurce may also be used. This command is compatible with the Agilent 83480/
54750 and is equivalent to AUTO.

19-12

TDR/TDT Commands
RESPonse:VERTical:OFFSet

Returned Format [:TDR{2 | 4}:RESPonse<N>:VERTical] {AUTO | MANual}<NL>
Example The following example gets the current vertical tracking mode for response 4, puts it in

the variable VertMode$, then prints the contents of the variable to the controller’s
screen.

10 DIM VertMode$[20]
20 OUTPUT 707;":TDR2:RESPONSE4:VERTICAL?"
30 ENTER 707;VertMode$
40 PRINT VertMode
50 END

RESPonse:VERTical:OFFSet
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>: VERTical:OFFSet <offset_value>
This command sets the vertical position of the specified response when vertical track-
ing is set to MANual. The position is always referenced to center screen.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

<offset_value> Offset value in the current channel UNITs. Suffix UNITs are ignored; only the scalar
part is used (m in mv).

Example The following example sets the vertical offset to 50 mV for response 1. This assumes
that the vertical tracking mode has already been set to MANual.

10 OUTPUT 707;":TDR2:RESPONSE1:VERTICAL:OFFSET 50 MV"
20 END

Query :TDR{2 | 4}:RESPonse<N>:VERTical:OFFSet?
The query returns the vertical offset for the specified response. This information is
valid only when the vertical tracking mode is set to manual for the response.

Returned Format [:TDR{2 | 4}:RESPonse<N>:VERTical:OFFSet] <volts><NL>
Example The following example gets the vertical offset for response 1, stores it in the numeric

variable Offset, then prints the contents of the variable to the controller’s screen.

10 OUTPUT 707;":TDR2:RESPONSE1:VERTICAL:OFFSET?"
20 ENTER 707;Offset
30 PRINT OFFSET
40 END

RESPonse:VERTical:RANGe
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:RESPonse<N>:VERTical:RANGe <range_value>

19-13

TDR/TDT Commands
STIMulus

This command specifies the vertical range of the TDR/TDT response when the vertical
tracking mode is set to MANual.

<N> An integer, 1 through 4. This value refers to the stimulus channel used to produce a
response waveform, while the response waveforms are numbered based on the destina-
tion channel. For TDR commands, the response waveform numbers and RESPonse<N>
refer to the same waveforms. This is not the case for TDT related commands.

<range_value> Vertical range in the current UNITs setting and suffix supplied. (The suffix does not set
the UNITs; it is ignored.)

Example The following example sets the vertical range to 5 volts for response 1. This assumes
that the vertical tracking mode has already been set to manual.

10 OUTPUT 707;":TDR2:RESPONSE1:VERTICAL:RANGE 5 V"
20 END

Query :TDR{2 | 4}:RESPonse<N>:VERTical:RANGe?
The query returns the current vertical range setting for the specified response. This
information is valid only when the vertical tracking mode is set to manual.

Returned Format [:TDR{2 | 4}:RESPonse<N>:VERTical:RANGe] <volts><NL>
Example The following example gets the vertical range setting for response 1, stores it in the

numeric variable Range, then prints the contents of the variable on the controller’s
screen.

10 OUTPUT 707;":TDR2:RESPONSE1:VERTICAL:RANGE?"
20 ENTER 707;Range
30 PRINT Range
40 END

STIMulus
This command is used in TDR/TDT mode only.

Command :TDR{2 | 4}:STIMulus {OFF | ON | ON1 | ON2 | ON1AND2 | DIFFerential | COMMonmode | EXTernal | ON3
| ON4 | ON3AND4}
This command turns the TDR/TDT stimulus on or off. This command is set before
starting normalization to specify type of normalization or reference plane calibration to
perform. For the differential stimulus setting, a reference plane calibration is executed
unless you specify which normalization procedure is to be executed using the :TDR {2
| 4}:DCALib command.

• The stimulus may be OFF, ON, or EXTernal.

• In slots 1 and 2, the stimulus may be OFF, ON1, ON2, ON1AND2, DIFFerential,
or COMMonmode.

• In slots 3 and 4, the stimulus may be OFF, ON3, ON4, ON3AND4, DIFFerential,
or COMMonmode.

19-14

TDR/TDT Commands
STIMulus

OFF Turn off the pulse generator, using the channel as a regular analyzer channel.

ON, ON1, ON3,
External

Turn on the channel 1 or channel 3 pulse generator for single-ended TDR or TDT mea-
surements.

ON2, ON4 Turn on the channel 2 or channel 4 pulse generator for single-ended TDR or TDT mea-
surements.

ON1AND2, ON3AND4 Turn on the pulse generator for channels 1 and 2 or channels 3 and 4 for simultaneous
single-ended TDR or TDT measurements.

DIFFerential Turn on the pulse generator for channels 1 and 2 or channels 3 and 4 for differential
TDR or TDT measurements.

COMMonmode Turn on the pulse generator for channels 1 and 2 or channels 3 and 4 for common-
mode TDR or TDT measurements.

Example The following example turns on pulse generators for channels 3 and 4 for single-ended
TDR measurements.

10 OUTPUT 707;":TDR4:STIMULUS ON3AND4"
20 END

Query :TDR{2 | 4}:STIMulus?
The query returns the current settings for the TDR pulse generators.

Returned Format [:TDR{2 | 4}:STIMulus] {OFF | ON | ON1 | ON2 | ON1AND2 | DIFFerential | COMMonmode | EXTernal | ON3
| ON4 | ON3AND4}<NL>

Example The following example gets the current settings of the pulse generators and stores it in
the variable Stim$, then prints the contents of that variable to the controller’s screen.

10 DIM Stim$[30]
20 OUTPUT 707;":TDR4:STIMULUS?"
30 ENTER 707;Stim$
40 PRINT Stim$
50 END

Note

After specifying the TDR/TDT stimulus, use the command :TDR<N>:PRESET. This command will set
up the instrument for TDR or TDT measurements based on the selected stimulus.

20

BRATe 20-2
POSition 20-2
PRECision 20-3
PRECision:RFRequency 20-4
PRECision:TREFerence 20-5
RANGe 20-6
REFerence 20-6
SCALe 20-7
UNITs 20-7

Timebase Commands

20-2

Timebase Commands
BRATe

Timebase Commands

The TIMebase subsystem commands control the horizontal (X axis) analyzer functions.

BRATe
Command :TIMebase:BRATe <bit_rate>

This command sets the bit rate used when the time base units are bit period.

<bit_rate> The bit rate (in bits-per-second).

Example The following example sets the bit rate to 155.520 MHz.

10 OUTPUT 707;":TIMEBASE:BRATe 155.520E6"
20 END

Query :TIMebase:BRATe?
The query returns the bit rate setting.

Returned Format [:TIMebase:BRATe] <bit_rate><NL>
Example The following example places the current bit rate in the numeric variable, Setting, then

prints the contents of the variable to the controller screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:BRATe?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

POSition
Command :TIMebase:POSition <position_value>

This command sets the time interval between the trigger event and the delay reference
point. The delay reference point is set with the TIMebase:REFerence command.

20-3

Timebase Commands
PRECision

N O T E In Jitter Mode, scale and position controls are disabled. Do not use this command Jitter
Mode. It generates a “Settings conflict” error.

N O T E In TDR/TDT mode, please note that the delay reference point is set to coincide with the
reference plane position.

<position_value>

The maximum value depends on the time/division setting. The value can optionally
have units of bits or seconds, refer to Table 1-8 on page 1-36 to view the suffix units. If
no units are specified, <position_value> has the units of the current units setting.

Example This example sets the delay position to 2 ms.

10 OUTPUT 707;":TIMEBASE:POSITION 2E-3"
20 END

Query :TIMebase:POSition? [{BITS | TIME}]
The query returns the current delay value in seconds.

BITS bits/screen at bit rate

TIME seconds/division

Returned Format [:TIMebase:POSition] <position_value><NL>
Example This example places the current delay value in the numeric variable, Value, then prints

the contents of the variable to the controller screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:POSITION?"
30 ENTER 707;Value
40 PRINT Value
50 END

PRECision

Command :TIMebase:PRECision {ON|OFF}
This command enables and disables the precision timebase. Enabling the precision
timebase will also set the time reference. Disabling the precision timebase invalidates
the time reference.

Example This example sets the precision timebase to on.

TDR/TDT Mode

Install the Precision Timebase Module

The Precision Timebase feature requires the installation of the Agilent 86107A Precision Timebase
Module.

20-4

Timebase Commands
PRECision:RFRequency

10 OUTPUT 707;":TIMEBASE:PRECISION ON"
20 END

Query :TIMebase:PRECision?
This query returns the state of the precision timebase.

Returned Format [:TIMebase:PRECision?] {0 | 1}<NL>
Example The following example places the current setting for precision timebase in the variable

Precision, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:PRECISION?"
30 ENTER 707;Precision
40 PRINT Precision
50 END

PRECision:RFRequency

Command :TIMebase:PRECision:RFRequency <frequency>
This command specifies the frequency of the reference clock at the input of the
86107A.

<frequency> The frequency is dependent upon the 86107A option number (9.0 GHz to
12.6 GHz and 18.0 GHz to 25.0 GHz for option 020 or, additionally, 38.0 GHz to 43.0
GHz for option 040).

Example This example specifies the frequency of the reference clock used by the precision time-
base.

10 OUTPUT 707;":TIMEBASE:PRECISION:RFREQUENCY 9.95328 GHz"
20 END

Query :TIMebase:PRECision:RFRequency?
This query returns the user specified frequency of the reference clock.

Returned Format [:TIMebase:PRECision:RFRequency?] <frequency><NL>
Example This example returns the current setting of the reference clock frequency to the vari-

able, Frequency, then prints the contents of the variable to the controller screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:PRECISION:RFREQUENCY?"
30 ENTER 707;Frequency
40 PRINT Frequency
50 END

Install the Precision Timebase Module

The Precision Timebase feature requires the installation of the Agilent 86107A Precision Timebase
Module.

20-5

Timebase Commands
PRECision:TREFerence

PRECision:TREFerence

Command :TIMebase:PRECision:TREFerence
This command sets the time reference. If the time reference fails to set, an error is
produced.

Example This example sets the time reference needed to enable the precision timebase.

10 OUTPUT 707;":TIMEBASE:PRECISION:TREFERENCE"
20 END

Query :TIMebase:PRECision:TREFerence?
This query returns whether the time reference has been successfully set. It does not
indicate whether the time reference is still valid.

A return value of 1 indicates the time reference was successfully set the last time the
:Timebase:Precision:Treference command was sent (or the "Reset Time Reference"
button was selected).

A return value of 0 indicates the time reference was not successfully set either by the
:Timebase:Precision:TReference command or by the "Reset Time Reference" button on
the front panel. The usual causes for not being able to set the time reference is:

• the signal is not present.
• the signal is too small or too large.
• the frequency is not in the specified ranges.

This query does not indicate whether the time reference is invalid due to a change in
either frequency or amplitude of the time reference signal. Use the following command
sequence to identify whether the timebase reference is still valid:

*CLS /Clear Status and Error Registers
PTEE 1 /Mask Bit 1 of Precision Timebase Event Register
OPEE 2048 /Mask Bit 12 of Operation Status Register
*STB? /Query Status Byte

A value >= 128 returned from *STB? query indicates that the 86107A time base refer-
ence is invalid. You will then need to reset the timebase reference and send the above
commands again to reset the status byte.

Returned Format [:TIMebase:PRECision:TREFerence] {0 | 1}
Example This example returns the current status of the time reference to the variable status,

then prints the contents of the variable to the controller screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off

Install the Precision Timebase Module

The Precision Timebase feature requires the installation of the Agilent 86107A Precision Timebase
Module.

20 OUTPUT 707;":TIMEBASE:PRECISION:TREFERENCE?"
30 ENTER 707;Status
40 PRINT Status
50 END

RANGe
Command :TIMebase:RANGe <full_scale_range>

This command sets the full-scale horizontal time in seconds. The range value is ten
times the time-per-division value. Range is always set in units of time (seconds), not in
bits.

N O T E In Jitter Mode, scale and position controls are disabled. Do not use this command Jitter
Mode. It generates a “Settings conflict” error.

<full_scale_range> 100 ps to 10 s

Example This example sets the full-scale horizontal range to 10 ms.

10 OUTPUT 707;":TIMEBASE:RANGE 10E-3"
20 END

Query :TIMebase:RANGe?
The query returns the current full-scale horizontal time.

Returned Format [:TIMebase:RANGe] <full_scale_range><NL>
Example This example places the current full-scale horizontal range value in the numeric vari-

able, Setting, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:RANGE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

REFerence
Command :TIMebase:REFerence {LEFT | CENTer}

This command sets the delay reference to the left or center side of the display.

Example This example sets the delay reference to the center of the display.

10 OUTPUT 707;":TIMEBASE:REFERENCE CENTER"
20 END

Query :TIMebase:REFerence?
The query returns the current delay reference position.

Returned Format [:TIMebase:REFerence] {LEFT | CENTer}<NL>
Example This example places the current delay reference position in the string variable, Set-

ting$, then prints the contents of the variable to the computer's screen.

10 DIM Setting$[50] !Dimension variable

20-7

Timebase Commands
SCALe

20 OUTPUT 707;":TIMEBASE:REFERENCE?"
30 ENTER 707;Setting$
40 PRINT Setting$
50 END

SCALe
Command :TIMebase:SCALe <value>

This command sets the time base scale. This corresponds to the horizontal scale value
displayed as time/div on the analyzer screen.

N O T E In Jitter Mode, scale and position controls are disabled. Do not use this command Jitter
Mode. It generates a “Settings conflict” error.

<value> Value can optionally have units of bits or seconds, refer to Table 1-8 on page 1-36 to
view the suffix units. If no units are specified <value> has units of the current units set-
ting.

seconds:time per division
bits:bits on screen at bit rate setting

Example This example sets the scale to 10 ms/div.

10 OUTPUT 707;":TIMEBASE:SCALE 10E-3"
20 END

Query :TIMebase:SCALe? [{BITS | TIME}]
The query returns the current scale time setting. If the optional parameter is omitted,
the scale value returned is in the units of the current units setting (bits or time).

BITS bits/screen at bit rate

TIME seconds/division

Returned Format [:TIMebase:SCALe] <time><NL>
Example This example places the current scale value in the numeric variable, Setting, then

prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":TIMEBASE:SCALE?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

UNITs
Command :TIMebase:UNITs {TIME | BITS}

This command sets the time base units.

Example The following example sets the time base units to bits.

10 OUTPUT 707;":TIMEBASE:UNITs BITS"
20 END

20-8

Timebase Commands
UNITs

Query :TIMebase:UNITs?
The query returns the time base units.

Returned Format [:TIMebase:UNITs] {TIME | BITS}<NL>
Example The following example places the current bit rate in the numeric variable, Setting, then

prints the contents of the variable to the controller’s screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":TIMEBASE:UNITs?"
30 ENTER 707;Setting
40 PRINT Setting
50 END

21

ATTenuation 21-2
BRATe 21-2
BRATe:AUTodetect 21-3
BWLimit 21-3
DCDRatio 21-3
DCDRatio:AUTodetect 21-4
GATed 21-4
HYSTeresis 21-4
LEVel 21-5
PLENgth 21-5
PLENgth:AUTodetect 21-5
PLOCk 21-6
PLOCk:AUTodetect 21-6
RBIT 21-6
SLOPe 21-7
SOURce 21-7

Trigger Commands

21-2

Trigger Commands
ATTenuation

Trigger Commands

The scope trigger circuitry helps you locate the waveform you want to view. Edge trig-
gering identifies a trigger condition by looking for the slope (rising or falling) and volt-
age level (trigger level) on the source you select. Any input channel, auxiliary input
trigger (4-channel scopes only), line, or external trigger (2-channel scopes only) inputs
can be used as the trigger source.

The commands in the TRIGger subsystem define the conditions for triggering. The
command set has been defined to closely represent the front-panel trigger dialogs.

ATTenuation
Command :TRIGger:ATTenuation <attenuation factor>[,{RATio | DECibel}]

This command controls the attenuation factor and units. The default attenuation factor
value is 1:1. The default attenuation units is ratio.

Query :TRIGger:ATTenuation?

The query returns the current attenuation factor and units.

Returned Format [:TRIGger:ATTenuation] <attenuation factor>[,{RATio | DECibel}]<NL>

BRATe
Command :TRIGger:BRATe <bit_rate>

This command sets the bit rate when the trigger is in pattern lock mode.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example 10 OUTPUT 707; ":TRIGger:BRATe 1E9"
20 END

Query :TRIGger:BRATe?
This query returns the current setting of the bit rate.

Returned Format [:TRIGger:BRATe] <bit_rate><NL>

21-3

Trigger Commands
BRATe:AUTodetect

BRATe:AUTodetect
Command :TRIGger:BRATe:AUTodetect {{ON | 1} | {OFF | 0}}

This command enables or disables automatic detection of the bit rate. When disabled,
use the :TRIGger:BRATe command to set the bit rate. When enabled, use the :TRIG-
ger:PLOCk:AUTodetect command to initiate automatic detection.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example This example turns automatic detection of the bit rate on.

10 OUTPUT 707; ":TRIGger:BRATe:AUTodetect ON"
20 END

Query :TRIGger:BRATe:AUTodetect?
Returned Format [:TRIGger:BRATe:AUTodetect] {1 | 0}<NL>

BWLimit
Command :TRIGger:BWLimit {DIVided | HIGH | LOW}

This command controls an internal lowpass filter and a divider in the 86100A trigger.
The bandwidth of the trigger is limited to approximately 100 MHz. DIVided mode is
unaffected by the level, hysteresis, and slope settings. The DIVided parameter is only
valid if the mainframe has option 001.

Example The following example turns on the bandwidth limit filter for the 86100A trigger:

10 OUTPUT 707;”:TRIGGER:BWLIMIT LOW”
20 END

Query :TRIGger:BWLimit?
The query returns the current setting for the specified trigger input.

Returned Format [:TRIGger:BWLimit] {HIGH | LOW| DIV}<NL>

DCDRatio
Command :TRIGger:DCDRatio <data_to_clock_divide_ratio>

This command is used to set the data-to-clock divide ratio used by pattern lock trigger
mode. <data_to_clock_divide_ratio> must be one of the following integers: 1, 2, 4, 5, 8,
10, 15, 16, 20, 25, 30, 32, 35, 40, 45, 50, 64, 66, 100, 128.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example 10 OUTPUT 707; ":TRIGger:DCDRatio 16"
20 END

21-4

Trigger Commands
DCDRatio:AUTodetect

Query :TRIGger:DCDRatio?
This query returns the current setting of data-to-clock divide ratio.

Returned Format [:TRIGger:DCDRatio] <data_to_clock_divide_ratio><NL>

DCDRatio:AUTodetect
Command :TRIGger:DCDRatio:AUTodetect {{ON | 1} | {OFF | 0}}

This command enables or disables automatic detection of the data-to-clock divide
ratio. When disabled, use the :TRIGger:DCDRatio command to set the data-to-clock divide
ratio. When enabled, use the :TRIGger:PLOCk:AUTodetect command to initiate automatic
detection.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example This example turns automatic detection of the data-to-clock divide ratio off.

10 OUTPUT 707; ":TRIGger:DCDRatio:AUTodetect ON"
20 END

Query :TRIGger:DCDRatio:AUTodetect?
Returned Format [:TRIGger:DCDRatio:AUTodetect] {1 | 0}<NL>

GATed
Command :TRIGger:GATed {ON | 1 | OFF | 0}

This command enables or disables the ability of the instrument to respond to trigger
inputs.

Query :TRIGger:GATed?
The query returns the current gated setting.

Returned Format [:TRIGger:GATed] {1 | 0}<NL>

HYSTeresis
Command :TRIGger:HYSTeresis {NORMal | HSENsitivity}

This command specifies the trigger hysteresis . NORMal is the typical hysteresis selec-
tion. HSENsitivity gives minimum hysteresis and the highest bandwidth.

Query :TRIGger:HYSTeresis?
The query returns the current hysteresis setting.

Returned Format [:TRIGger:HYSTeresis] {NORMal | HSENSitivity}<NL>

21-5

Trigger Commands
LEVel

LEVel
Command :TRIGger:LEVel <level>

This command specifies the trigger level. Only one trigger level is stored in the ana-
lyzer.

<level> The trigger level on all trigger inputs.

Query :TRIGger:LEVel?
The query returns the trigger level.

Returned Format [:TRIGger:LEVel] <level> <NL>

PLENgth
Command :TRIGger:PLENgth <pattern_length>

This command sets the length of the pattern used in pattern lock trigger mode.
<pattern_length> is an integer value in the range of 1 to 215 in jitter mode and 1 to 223 in
the other instrument modes.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example 10 OUTPUT 707; ":TRIGger:PLENgth 127"
20 END

Query :TRIGger:PLENgth?
This query returns the current setting of pattern length.

Returned Format [:TRIGger:PLENgth] <pattern_length><NL>

PLENgth:AUTodetect
Command :TRIGger:PLENgth:AUTodetect {{ON | 1} | {OFF | 0}}

This command enables or disables automatic detection of the pattern length. When dis-
abled, use the :TRIGger:PLENgth command to set the pattern length. When enabled, use
the :TRIGger:PLOCk:AUTodetect command to initiate automatic detection.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example This example turns automatic detection of the pattern length off.

10 OUTPUT 707; ":TRIGger:PLENgth:AUTodetect OFF"
20 END

Query :TRIGger:PLENgth:AUTodetect?
Returned Format [:TRIGger:PLENgth:AUTodetect] {1 | 0}<NL>

PLOCk
Command TRIGger:PLOCk {{ON | 1} | {OFF | 0}}

This command enables or disables pattern lock. When pattern lock is turned on, the
86100C internally generates a trigger synchronous with the user's pattern. Pattern lock
is only available on an 86100C mainframe with Option 001 installed.

Firmware Revision Re-
quired

4.00 and above (86100C instruments).

Example This example turns pattern lock on.

10 OUTPUT 707; ":TRIGger:PLOCk ON"
20 END

Query TRIGger:PLOCk?
Returned Format [:TRIGger:PLOCk] {1 | 0}<NL>

PLOCk:AUTodetect
Command :TRIGger:PLOCk:AUTodetect

This command executes autodetecting of pattern lock parameters.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example 10 OUTPUT 707; ":TRIGger:PLOCk:AUTodetect"
20 END

Query :TRIGger:PLOCk:AUTodetect?
Returns a string explaining the results of the last autodetect. The string is empty if the
last autodetect completed successfully. The returned string stays the same until the
next autodetect is executed.

Returned Format The following are examples of strings returned by this query. (The blank spaces are
filled in with the appropriate numeric values.)

Detected trigger rate ___ is less than the minimum trigger rate of ___
Unable to determine the pattern length
Unable to determine the bit rate and trigger divide ratio
User supplied data rate ___ is not a multiple of detected trigger rate ___

RBIT
Command :TRIGger:RBIT <relative_bit>

This command sets the relative bit number used by pattern lock trigger mode.

21-7

Trigger Commands
SLOPe

<relative_bit> <relative_bit> is an integer with a minimum value of 0 and a maximum value equal to
the current pattern length setting minus one.

Firmware Revision Re-
quired

4.00 and above (86100C instruments)

Example 10 OUTPUT 707; ":TRIGger:RBIT 1023"
20 END

Query :TRIGger:RBIT?
This query returns the current setting of relative bit.

Returned Format [:TRIGger:RBIT] <relative_bit><NL>

SLOPe
Command :TRIGger:SLOPe {POSitive | NEGative}

This command specifies the slope of the edge on which to trigger.

Query :TRIGger:SLOPe?
The query returns the slope for the trigger.

Returned Format [:TRIGger:SLOPe] {POSitive | NEGative}<NL>

Example 10 OUTPUT 707; ":TRIGger:SLOPe POSitive"
20 END

SOURce
Command :TRIGger:SOURce [<trigger> {FPANel | FRUN | LMODule | RMODule}]

This command selects the trigger input. Front Panel, Left Module, and Right Module
are inputs from the front panel of the instrument. Free Run is internally generated, and
is not affected by the settings of gates, level, slope, bandwidth, or hysteresis.

<trigger> Front PANel, Left MODule, and Right MODule are inputs on the front of the instru-
ment. FreeRUN is internally generated and is unaffected by the settings for gated,
level, slope, bandwidth or hysteresis.

Query :TRIGger:SOURce?
The query returns the current trigger source of the current mode.

Returned Format [:TRIGger:SOURce] <trigger><NL>

21-8

Trigger Commands
SOURce

22

BANDpass? 22-4
BYTeorder 22-4
COUNt? 22-5
DATA 22-5
FORMat 22-7
POINts? 22-9
PREamble 22-9
SOURce 22-13
SOURce:CGRade 22-14
TYPE? 22-15
XDISplay? 22-15
XINCrement? 22-16
XORigin? 22-16
XRANge? 22-17
XREFerence? 22-17
XUNits? 22-17
YDISplay? 22-18
YINCrement? 22-18
YORigin? 22-19
YRANge? 22-19
YREFerence? 22-19
YUNits? 22-20

Waveform Commands

22-2

Waveform Commands

Waveform Commands

The WAVeform subsystem is used to transfer waveform data between a computer and
the analyzer. It contains commands to set up the waveform transfer and to send or
receive waveform records to or from the analyzer.

Data Acquisition When the data is acquired using the DIGitize command, the data is placed in the chan-
nel or function memory of the specified source. After the DIGitize command, the ana-
lyzer is stopped. If the analyzer is restarted over GPIB or the front panel, the data
acquired with the DIGitize command is overwritten.

You can query the preamble, elements of the preamble, or waveform data while the
analyzer is running, but the data will reflect only the current acquisition, and subse-
quent queries will not reflect consistent data. For example, if the analyzer is running
and you query the X origin, the data is queried in a separate GPIB command, and it is
likely that the first point in the data will have a different time than that of the X origin.
This is due to data acquisitions that may have occurred between the queries. For this
reason, Agilent does not recommend this mode of operation. Instead, you should use
the DIGitize command to stop the analyzer so that all subsequent queries will be con-
sistent.

Function data is volatile and must be read following a DIGitize command or the data
will be lost when the analyzer is turned off.

Waveform Data

and Preamble

The waveform record consists of two parts: the preamble and the waveform data. The
waveform data is the actual sampled data acquired for the specified source. The pre-
amble contains the information for interpreting the waveform data, including the num-
ber of points acquired, the format of the acquired data, and the type of acquired data.
The preamble also contains the X and Y increments, origins, and references for the
acquired data.

The values in the preamble are set when you execute the DIGitize command. The pre-
amble values are based on the settings of controls in the ACQuire subsystem. Although
you can change preamble values with a GPIB computer, you cannot change the way the
data is acquired. Changing the preamble values cannot change the type of data that
was actually acquired, the number of points actually acquired, etc.

22-3

Waveform Commands

N O T E The waveform data and preamble must be read or sent using two separate commands:
WAVeform:DATA and WAVeform:PREamble. When changing any waveform preamble
values, be sure to set the points in the preamble to the same value as the actual number
of points in the waveform. Otherwise, inaccurate data will result.

Data Conversion Data sent from the analyzer must be scaled for useful interpretation. The values used
to interpret the data are the X and Y origins, X and Y increments, and X and Y refer-
ences. These values can be read from the waveform preamble.

Conversion from

Data Value to

Units

To convert the waveform data values (essentially A/D counts) to real-world units, such
as volts, use the following scaling formulas:

Y-axis Units = (data value – Yreference) × Yincrement + Yorigin
X-axis Units = (data index – Xreference) × Xincrement + Xorigin,

where the data index starts at zero: 0, 1, 2,, n-1.

The first data point for the time (X-axis units) must be zero so the time of the first data
point is the X origin.

N O T E This conversion is not required for waveform data values returned in ASCII format.

Data Format for

GPIB Transfer

There are four types of data formats that you can select with the WAVeform:FORMat
command: ASCii, BYTE, WORD, and LONG. Refer to the FORMat command in this
chapter for more information on data format.

22-4

Waveform Commands
BANDpass?

Waveform Commands

BANDpass?
Query :WAVeform:BANDpass?

This query returns an estimate of the maximum and minimum bandwidth limits of the
source signal. Bandwidth limits are computed as a function of the coupling and the
selected filter mode. Cutoff frequencies are derived from the acquisition path and soft-
ware filtering.

Returned Format [:WAVeform:BANDpass]<upper_cutoff>,<lower_cutoff><NL>
<upper_cutoff> Maximum frequency passed by the acquisition system.

<lower_cutoff> Minimum frequency passed by the acquisition system.

Example This example places the estimated maximum and minimum bandwidth limits of the
source signal in the string variable, Bandwidth$, then prints the contents of the vari-
able to the computer's screen.

10 DIM Bandwidth$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:BANDPASS?"
30 ENTER 707;Bandwidth$
40 PRINT Bandwidth$
50 END

BYTeorder
Command :WAVeform:BYTeorder {MSBFirst | LSBFirst}

This command selects the order in which bytes are transferred to and from the ana-
lyzer using WORD and LONG formats. If MSBFirst is selected, the most significant byte
is transferred first. Otherwise, the least significant byte is transferred first. The default
setting is MSBFirst.

Example This example sets up the analyzer to send the most significant byte first during data
transmission.

10 OUTPUT 707;":WAVEFORM:BYTEORDER MSBFIRST"
20 END

Query :WAVeform:BYTeorder?
The query returns the current setting for the byte order.

Returned Format [:WAVeform:BYTeorder] {MSBFirst | LSBFirst}<NL>
Example This example places the current setting for the byte order in the string variable, Set-

ting$, then prints the contents of the variable to the computer screen.

10 DIM Setting$[10] !Dimension variable
20 OUTPUT 707;":WAVEFORM:BYTEORDER?"
30 ENTER 707;Setting$

22-5

Waveform Commands
COUNt?

40 PRINT Setting$
50 END

COUNt?
Query :WAVeform:COUNt?

This query returns the fewest number of hits in all of the time buckets for the currently
selected waveform. For the AVERAGE waveform type, the count value is the fewest
number of hits for all time buckets. This value may be less than or equal to the value
specified with the ACQuire:COUNt command.

For the NORMAL, RAW, INTERPOLATE, and VERSUS waveform types, the count
value returned is one, unless the data contains holes (sample points where no data is
acquired). If the data contains holes, zero is returned.

Returned Format [:WAVeform:COUNt] <N><NL>
<N> An integer. Values range from 1 to 262144 for NORMal, RAW, or INTerpolate types and

from 1 to 32768 for VERSus type.

Example This example places the current count field value in the string variable, Count$, then
prints the contents of the variable to the computer's screen.

10 DIM Count$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:COUNT?"
30 ENTER 707;Count$
40 PRINT Count$
50 END

DATA
Command :WAVeform:DATA <block_data>[,<block_data>]

This command transfers waveform data to the analyzer over GPIB and stores the data
in a previously specified waveform memory. The waveform memory is specified with
the WAVeform:SOURce command. Only waveform memories may have waveform data
sent to them. The format of the data being sent must match the format previously
specified by the waveform preamble for the destination memory.

VERSus data is transferred as two arrays. The first array contains the data on the X
axis, and the second array contains the data on the Y axis. The two arrays are trans-
ferred one at a time over GPIB in a linear format. There are n data points sent in each
array, where n is the number in the points portion of the preamble.

MSBFirst and LSBFirst

MSBFirst is for microprocessors, like Motorola’s, where the most significant byte resides at the
lower address. LSBFirst is for microprocessors, like Intel’s, where the least significant byte resides
at the lower address.

22-6

Waveform Commands
DATA

CGRade data is transferred as a two dimensional array, 320 words high and 450 words
wide. The array corresponds to the graticule display, where each word is a sample hit
count. The array is transferred column by column, starting with the upper left corner of
the graticule.

The full-scale vertical range of the A/D converter will be returned with the data query.
You should use the Y-increment, Y-origin, and Y-reference values to convert the full-
scale vertical ranges to voltage values. You should use the
Y-range and Y-display values to plot the voltage values. All of these reference values are
available from the waveform preamble. Refer to "Conversion from Data Value to Units"
earlier in this chapter.

N O T E This command operates on waveform data which is not compatible with Jitter Mode. Do
not use this command Jitter Mode. It generates a “Signal or trigger source selection is
not available” error.

<block_data> Binary block data in the # format.

Example This example sends 1000 bytes of previously saved data to the analyzer from the array,
Set.

10 OUTPUT 707 USING "#,K";:WAVEFORM:DATA #800001000"
20 OUTPUT 707 USING "W";Set(*)
30 END

Query :WAVeform:DATA?
The query outputs waveform data to the computer over the GPIB interface. The data is
copied from a waveform memory, function, channel buffer, or histogram previously
specified with the WAVeform:SOURce command. The returned data is described by the
waveform preamble.

Returned Format [:WAVeform:DATA] <block_data>[,<block_data>]<NL>
Example This example places the current waveform data from channel 1 of the array Wdata in

the word format.

HP BASIC Image Specifiers

is an HP BASIC image specifier that suppresses the automatic output of the EOL sequence follow-
ing the last output item.

K is an HP BASIC image specifier that outputs a number or string in standard form with no leading or
trailing blanks.

W is an HP BASIC image specifier that outputs 16-bit words with the most significant byte first.

CGRade as Waveform Source

If the waveform source is CGRade, then the waveform fromat must be set to WORD. WORD is the
only format that works with color grade data.

22-7

Waveform Commands
FORMat

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1 !Select source
30 OUTPUT 707;":WAVEFORM:FORMAT WORD" !Select word format
40 OUTPUT 707;":WAVEFORM:DATA?"
50 ENTER 707 USING "#,1A";Pound_sign$
53 ENTER 707 USING "#,1D";Header_length
55 ENTER 707 USING "#,"&VAL$(Header_length)&"D";Length
60 Length = Length/2 !Length in words
70 ALLOCATE INTEGER Wdata(1:Length)
80 ENTER 707 USING "#,W";Wdata(*)
90 ENTER 707 USING "-K,B";End$
100 END

The format of the waveform data must match the format previously specified by the
WAVeform:FORMat, WAVeform:BYTeorder, and WAVeform:PREamble commands.

FORMat
Command :WAVeform:FORMat {ASCii | BYTE | LONG | WORD}

This command sets the data transmission mode for waveform data output. This com-
mand controls how the data is formatted when the data is sent from the analyzer and
pertains to all waveforms. The default format is ASCii.

ASCii ASCII formatted data consists of ASCII digits with each data value separated by a
comma. Data values can be converted to real values on the Y axis (for example, volts)
and transmitted in floating point engineering notation. In ASCII:

• The value “99.999E+36” represents a hole level (a hole in the
acquisition data).

• The value “99.999E+33” represents a clipped-high level.
• The value “99.999E+30” represents a clipped-low level.

HP BASIC Image Specifiers

is an HP BASIC image specifier that terminates the statement when the last ENTER item is termi-
nated. EOI and line feed are the item terminators.

1A is an HP BASIC image specifier that places the next character received in a string variable.

1D is an HP BASIC image specifier that places the next character in a numeric variable.

W is an HP BASIC image specifier that places the data in the array in word format with the first byte
entered as the most significant byte.

-K is an HP BASIC image specifier that places the block data in a string, including carriage returns
and line feeds until EOI is true or when the dimensioned length of the string is reached.

B is an HP BASIC specifier that enters the next byte in a variable.

22-8

Waveform Commands
FORMat

BYTE BYTE formatted data is formatted as signed 8-bit integers. If you use BASIC, you need
to create a function to convert these signed bits to signed integers. In byte format:

• The value 125 represents a hole level (a hole in the acquisition data).
• The value 127 represents a clipped-high level.
• The value 126 represents a clipped-low level.

Data is rounded when converted from a larger size to a smaller size. For waveform
transfer into the analyzer:

• The maximum valid qlevel is 124.
• The minimum valid qlevel is –128.

LONG LONG formatted data is transferred as signed 32-bit integers in four bytes. If WAVe-
form:BYTeorder is set to MSBFirst, the most significant byte of each word is sent first.
If the BYTeorder is LSBFirst, the least significant byte of each word is sent first. Long
format is only applicable to histogram data sources. In long format:

• The value 2046820352 represents a hole level (no sample data at the current
data point).

• Long format is only valid with histogram data sources.
WORD WORD formatted data is transferred as signed 16-bit integers in two bytes. If WAVe-

form:BYTeorder is set to MSBFirst, the most significant byte of each word is sent first.
If the BYTeorder is LSBFirst, the least significant byte of each word is sent first. In
word format:

• The value 31232 represents a hole level (no sample data at the current wave-
form data point).

• The value 32256 represents a clipped-high level.
• The value 31744 represents a clipped-low level.

For waveform transfer into the analyzer:

• The maximum valid qlevel is 30720.
• The minimum valid qlevel is –32736.

Example This example selects the WORD format for waveform data transmission.

10 OUTPUT 707;":WAVEFORM:FORMAT WORD"
20 END

Query :WAVeform:FORMat?
The query returns the current output format for transferring waveform data.

Returned Format [:WAVeform:FORMat] {ASCii | BYTE | LONG | WORD}<NL>
Example This example places the current output format for data transmission in the string vari-

able, Mode$, then prints the contents of the variable to the computer screen.

10 DIM Mode$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:FORMAT?"
30 ENTER 707;Mode$
40 PRINT Mode$
50 END

22-9

Waveform Commands
POINts?

POINts?
Query :WAVeform:POINts?

The query returns the points value in the current waveform preamble. The points value
is the number of time buckets contained in the waveform selected with the WAVe-
form:SOURce command.

Returned Format [:WAVeform:POINts] <points><NL>
<points> An integer. Values range from 1 to 262144. See the ACQuire:POINts command for more

information.

Example This example places the current acquisition length in the numeric variable, Length,
then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:POINTS?"
30 ENTER 707;Length
40 PRINT Length
50 END

See Also The ACQuire:POINts command in the ACQuire Commands chapter.

PREamble
Command :WAVeform:PREamble <preamble_data>

This command sends a waveform preamble to the previously selected waveform mem-
ory in the analyzer. The preamble contains the scaling and other values used to
describe the data. The waveform memory is specified with the WAVeform:SOURce
command. Only waveform memories may have waveform data sent to them. The pre-
amble can be used to translate raw data into time and voltage values.

The following lists the elements in the preamble.

<preamble_data> <format>, <type>, <points>,<count>, <X increment>,<X origin>,< X reference>, <Y increment>, <Y
origin>,<Y reference>, <coupling>, <X display range>, <X display origin>, <Y display range>, <Y display
origin>, <date, string>, <time, string>, <frame model #, string>, <module #, string>, <acquisition mode>,
<completion>, <X units>, <Y units>, <max bandwidth limit>,
<min bandwidth limit>

<date> A string containing the data in the format DD MMM YYYY, where DD is the day, 1 to 31;
MMM is the month; and YYYY is the year.

Turn Headers Off

When you are receiving numeric data into numeric variables, you should turn the headers off. Other-
wise, the headers may cause misinterpretation of returned data.

22-10

Waveform Commands
PREamble

<time> A string containing the time in the format HH:MM:SS:TT, where HH is the hour, 0 to 23,
MM is the minute, 0 to 59, SS is the second, 0 to 59, and TT is the hundreds of seconds,
0 to 99.

<frame model #> A string containing the model number and serial number of the frame in the format
MODEL#:SERIAL#.

<format> 0 for ASCII format.
1 for BYTE format.
2 for WORD format.

<type> 1 for RAW type.
2 for AVERAGE type.
3 not used
4 not used
5 for VERSUS type.
6 not used
7 for NORMAL type.
8 for DATABASE type.
9 for OHM units.
10 for REFLECT units.

<acquisition mode> 2 for SEQUENTIAL mode.

<coupling> 0 for AC coupling.

<x units>
<y units>

0 for UNKNOWN units.
1 for VOLT units.
2 for SECOND units.
3 for CONSTANT units.
4 for AMP units.
5 for DECIBEL units.
6 for HIT units.
7 for PERCENT units.
8 for WATT units.

See Table 22-1 on page 22-11 for descriptions of all the waveform preamble elements.

Query :WAVeform:PREamble?
The query outputs a waveform preamble to the computer from the waveform source,
which can be a waveform memory or channel buffer.

Returned Format [:WAVeform:PREamble] <preamble_data><NL>

HP BASIC Image Specifiers

is an HP BASIC image specifier that suppresses the automatic output of the EOL sequence follow-
ing the last output item.

K is an HP BASIC image specifier that outputs a number or string in standard form with no leading or
trailing blanks.

22-11

Waveform Commands
PREamble

Example This example outputs the current waveform preamble for the selected source to the
string variable, Preamble$.

10 DIM Preamble$[250] !Dimension variable
20 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
30 OUTPUT 707;":WAVEFORM:PREAMBLE?"
40 ENTER 707 USING "-K";Preamble$
50 END

See Also WAVeform:DATA

Placing the Block in a String

-K is an HP BASIC image specifier that places the block data in a string, including carriage returns
and line feeds, until EOI is true, or when the dimensioned length of the string is reached.

Table 22-1. Waveform Preamble Elements

Element Description

Format The format value describes the data transmission mode for
waveform data output. This command controls how the data is
formatted when it is sent from the analyzer. (See
WAVeform:FORMat.)

Type This value describes how the waveform was acquired. (See also
WAVeform:TYPE.)

Points The number of data points or data pairs contained in the waveform
data. (See ACQuire:POINts.)

Count For the AVERAGE waveform type, the count value is the minimum
count or fewest number of hits for all time buckets. This value may
be less than or equal to the value requested with the ACQuire:COUNt
command. For NORMAL, RAW, INTERPOLATE, and VERSUS
waveform types, this value is 0 or 1. The count value is ignored when
it is sent to the analyzer in the preamble. (See WAVeform:TYPE and
ACQuire:COUNt.)

X increment The X increment is the duration between data points on the X axis.
For time domain signals, this is the time between points.
(See WAVeform:XINCrement.)

22-12

Waveform Commands
PREamble

X Origin The X origin is the X-axis value of the first data point in the data
record.
For time domain signals, it is the time of the first point. This value is
treated as a double precision 64-bit floating point number.
(See WAVeform:XORigin.)

X Reference The X reference is the data point associated with the X origin. It is at
this data point that the X origin is defined. In this analyzer, the value
is always zero. (See WAVeform:XREFerence.)

Y Increment The Y increment is the duration between Y-axis levels. For voltage
waveforms, it is the voltage corresponding to one level.
(See WAVeform:YINCrement.)

Y Origin The Y origin is the Y-axis value at level zero. For voltage signals, it is
the voltage at level zero. (See WAVeform:YORigin.)

Y Reference The Y reference is the level associated with the Y origin. It is at this
level that the Y origin is defined. In this analyzer, this value is always
zero.
(See WAVeform:YREFerence.)

Coupling The input coupling of the waveform. The coupling value is ignored
when sent to the analyzer in the preamble.

X Display Range The X display range is the X-axis duration of the waveform that is
displayed. For time domain signals, it is the duration of time across
the display. (See WAVeform:XRANge.)

X Display Origin The X display origin is the X-axis value at the left edge of the display.
For time domain signals, it is the time at the start of the display.
This value is treated as a double precision 64-bit floating point
number.
(See WAVeform:XDISplay.)

Y Display Range The Y display range is the Y-axis duration of the waveform which is
displayed. For voltage waveforms, it is the amount of voltage across
the display. (See WAVeform:YRANge.)

Y Display Origin (See WAVeform:YDISplay.)

Date The date that the waveform was acquired or created.

Time The time that the waveform was acquired or created.

Table 22-1. Waveform Preamble Elements (Continued)

Element Description

22-13

Waveform Commands
SOURce

SOURce
Command :WAVeform:SOURce {WMEMory<N> | FUNCtion<N> | CHANnel<N> | HISTogram | RESPonse<N> |

CGRade}
This command selects a channel, function, TDR response, waveform memory, histo-
gram, or color grade/gray scale as the waveform source.

Frame Model # The model number of the frame that acquired or created this
waveform.
The frame model number is ignored when it is sent to an analyzer in
the preamble.

Acquisition Mode The acquisition sampling mode of the waveform.

Complete The complete value is the percent of time buckets that are complete.
The complete value is ignored when it is sent to the analyzer in the
preamble. (See WAVeform:COMPlete.)

X Units The X-axis units of the waveform. (See WAVeform:XUNits.)

Y Units The Y-axis units of the waveform. (See WAVeform:YUNits.)

Band Pass The band pass consists of two values that are an estimation of the
maximum and minimum bandwidth limits of the source signal. The
bandwidth limit is computed as a function of the selected coupling
and filter mode. (See the WAVeform:BANDpass query.)

Table 22-1. Waveform Preamble Elements (Continued)

Element Description

CGRade as Waveform Source

If the waveform source is set to CGRade, the default source is the first database signal displayed.
To set the CGRade source you must use the :WAVeform:SORUce:CGRade command.

RESPonse<N> as Waveform Source

TDR responses are valid sources for waveform queries only if the current settings for channel
bandwidth, record length, and timebase match the settings valid during the TDR normalization pro-
cedure. In the case of a mismatch, the TDR response is not displayed and queries such as
:WAV:POINTS? will return an error message indicating that the “source is not valid”.

22-14

Waveform Commands
SOURce:CGRade

<N> An integer, 1 through 4.

Example This example selects channel 1 as the waveform source.

10 OUTPUT 707;":WAVEFORM:SOURCE CHANNEL1"
20 END

Query :WAVeform:SOURce?
The query returns the currently selected waveform source.

Returned Format [:WAVeform:SOURce] {WMEMory<N> | FUNCtion<N> | RESPonse<N> | CHANnel<N> | HISTogram |
CGRade}<NL>

Example This example places the current selection for the waveform source in the string vari-
able, Selection$, then prints the contents of the variable to the computer screen.

10 DIM Selection$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:SOURCE?"
30 ENTER 707;Selection$
40 PRINT Selection$
50 END

SOURce:CGRade
Command :WAVeform:SOURce:CGRade {CHANnel<N> | FUNCtion<N> | CGMemory}

This command sets the color grade source for waveform commands. The default is the
first displayed database signal.

CHANnel<N> Corresponds to the channel databases.

FUNCtion<N> Corresponds to the function databases.

<N> An integer, 1 through 4.

Example The following example sets the channel 1 database as the CGRade source.

:WAVeform:SOURce:CGRade CHAN1
:WAVeform:SOURce CGRade
The CGRade parameter in the second command corresponds to the channel 1 data-
base.

Query :WAVeform:SOURce:CGRade?
The query returns the current color grade source.

Returned Format [:WAVeform:SOURce:CGRade] {CHANnel<N> | FUNCtion<N> | CGMemory}<NL>
Example The following example gets the current color grade source and store the value in the

string array, setting.

write_IO (“:WAVeform:SOURce:CGRade?”);
read_IO (Setting, SETTING_SIZE);

Long Format

Histogram data sources require long format.

22-15

Waveform Commands
TYPE?

TYPE?
Query :WAVeform:TYPE?

This query returns the current acquisition data type for the currently selected source.
The type returned describes how the waveform was acquired. The waveform type may
be NORMAL, RAW, INTERPOLATE, AVERAGE, or VERSUS.

NORMAL Normal data consists of the last data point in each time bucket.

RAW Raw data consists of one data point in each time bucket with no interpolation.

INTERPOLATE In the interpolate acquisition type, the last data point in each time bucket is stored, and
additional data points are filled in between the acquired data points by interpolation.

AVERAGE Average data consists of the average of the first n hits in a time bucket, where n is the
value in the count portion of the preamble. Time buckets that have fewer than n hits
return the average of the data they contain. If the ACQuire:COMPlete parameter is set
to 100%, then each time bucket must contain the number of data hits specified with
the ACQuire:COUNt command.

VERSUS VERSus data consists of two arrays of data: one containing the X-axis values, and the
other containing the Y-axis values. Versus waveforms can be generated using the
FUNCtion subsystem commands.

Returned Format [:WAVeform:TYPE] {NORMal | RAW | INTerpolate | AVERage | VERSus}<NL>
Example This example places the current acquisition data type in the string variable, Type$,

then prints the contents of the variable to the computer's screen.

10 DIM Type$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:TYPE?"
30 ENTER 707;Type$
40 PRINT Type$
50 END

XDISplay?
Query :WAVeform:XDISplay?

This query returns the X-axis value at the left edge of the display. For time domain sig-
nals, it is the time at the start of the display. For VERSus type waveforms, it is the value
at the center of the X-axis of the display. This value is treated as a double precision 64-
bit floating point number.

Returned Format [:WAVeform:XDISplay] <value><NL>
<value> A real number representing the X-axis value at the left edge of the display.

Example This example returns the X-axis value at the left edge of the display to the numeric
variable, Value, then prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XDISPLAY?"
30 ENTER 707;Value
40 PRINT Value

22-16

Waveform Commands
XINCrement?

50 END

XINCrement?
Query :WAVeform:XINCrement?

This query returns the duration between data points on the X axis. For time domain
signals, this is the time difference between consecutive data points for the currently
specified waveform source. For VERSus type waveforms, this is the duration between
levels on the X axis. For voltage waveforms, this is the voltage corresponding to one
level.

Returned Format [:WAVeform:XINCrement] <value><NL>
<value> A real number representing the duration between data points on the X axis.

Example This example places the current Xincrement value for the currently specified source in
the numeric variable, Value, then prints the contents of the variable to the computer
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:XINCREMENT?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the Xincrement value through the WAVeform:PREamble query.

XORigin?
Query :WAVeform:XORigin?

This query returns the X-axis value of the first data point in the data record. For time
domain signals, it is the time of the first point. For VERSus type waveforms, it is the X-
axis value at level zero. For voltage waveforms, it is the voltage at level zero. The value
returned by this query is treated as a double precision 64-bit floating point number.

Returned Format [:WAVeform:XORigin] <value><NL>
<value> A real number representing the X-axis value of the first data point in the data record.

Example This example places the current Xorigin value for the currently specified source in the
numeric variable, Value, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF"!Response headers off
20 OUTPUT 707;":WAVEFORM:XORIGIN?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the Xorigin value through the WAVeform:PREamble query.

22-17

Waveform Commands
XRANge?

XRANge?
Query :WAVeform:XRANge?

This query returns the X-axis duration of the displayed waveform. For time domain sig-
nals, it is the duration of the time across the display. For VERSus type waveforms, it is
the duration of the waveform that is displayed on the X axis.

Returned Format [:WAVeform:XRANge] <value><NL>
<value> A real number representing the X-axis duration of the displayed waveform.

Example This example returns the X-axis duration of the displayed waveform to the numeric
variable, Value, then prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:XRANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

XREFerence?
Query :WAVeform:XREFerence?

This query returns the data point or level associated with the Xorigin data value. It is at
this data point or level that the X origin is defined. In this analyzer, the value is always
zero.

Returned Format [:WAVeform:XREFerence] 0<NL>
Example This example places the current X reference value for the currently specified source in

the numeric variable, Value, then prints the contents of the variable to the computer
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:XREFERENCE?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the Xreference value through the WAVeform:PREamble query.

XUNits?
Query :WAVeform:XUNits?

This query returns the X-axis units of the currently selected waveform source. The
currently selected source may be a channel, function, or waveform memory.

Returned Format [:WAVeform:XUNits] {UNKNown | VOLT | SECond | CONStant | AMP | DECibels}<NL>
Example This example returns the X-axis units of the currently selected waveform source to the

string variable, Unit$, then prints the contents of the variable to the computer's screen.

22-18

Waveform Commands
YDISplay?

10 DIM Unit$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:XUNITS?"
30 ENTER 707;Unit$
40 PRINT Unit$
50 END

YDISplay?
Query :WAVeform:YDISplay?

This query returns the Y-axis value at the center of the display, in the units of the cur-
rent waveform source.

Returned Format [:WAVeform:YDISplay] <value><NL>
<value> A real number representing the Y-axis value at the center of the display.

Example This example returns the current Y display value to the numeric variable, Value, then
prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:YDISPLAY?"
30 ENTER 707;Value
40 PRINT Value
50 END

YINCrement?
Query :WAVeform:YINCrement?

This query returns the duration between the Y-axis levels.

• For BYTE and WORD data, it is the value corresponding to one level incre-
ment in terms of waveform units.

• For ASCII data format, the YINCrement is the full range covered by the A/D
converter.

Returned Format [:WAVeform:YINCrement] <real_value><NL>
<real_value> A real number in exponential (NR3) format.

Example This example places the current Yincrement value for the currently specified source in
the numeric variable, Value, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:YINCREMENT?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the Yincrement value through the WAVeform:PREamble query.

22-19

Waveform Commands
YORigin?

YORigin?
Query :WAVeform:YORigin?

This query returns the Y-axis value at level zero.

• For BYTE and WORD data, and voltage signals, it is the voltage at level zero.

• For ASCII data format, the YORigin is the Y-axis value at the center of the
data range. Data range is returned in the Y increment.

Returned Format [:WAVeform:YORigin] <real_value><NL>
<real_value> A real number in exponential (NR3) format.

Example This example places the current Y origin value in the numeric variable, Center, then
prints the contents of the variable to the computer screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:YORIGIN?"
30 ENTER 707;Center
40 PRINT Center
50 END

See Also You can obtain the YORigin value through the WAVeform:PREamble query.

YRANge?
Query :WAVeform:YRANge?

This query returns the range of Y values (in terms of waveform units) across the entire
display.

Returned Format [:WAVeform:YRANge] <value><NL>
<value> A real number representing the Y-axis duration of the displayed waveform.

Example This example returns the current Y Range value to the numeric variable, Value, then
prints the contents of the variable to the computer's screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:YRANGE?"
30 ENTER 707;Value
40 PRINT Value
50 END

YREFerence?
Query :WAVeform:YREFerence?

This query returns the level associated with the Y origin. It is at this level that the Y ori-
gin is defined. In this analyzer, the value is always zero.

Returned Format [:WAVeform:YREFerence] <integer_value><NL>

22-20

Waveform Commands
YUNits?

<integer_value> Always 0.

Example This example places the current Y Reference value for the currently specified source in
the numeric variable, Value, then prints the contents of the variable to the computer's
screen.

10 OUTPUT 707;":SYSTEM:HEADER OFF" !Response headers off
20 OUTPUT 707;":WAVEFORM:YREFERENCE?"
30 ENTER 707;Value
40 PRINT Value
50 END

See Also You can obtain the YReference value through the WAVeform:PREamble query.

YUNits?
Query :WAVeform:YUNits?

This query returns the Y-axis units of the currently selected waveform source. The cur-
rently selected source may be a channel, function, waveform memory, TDR response,
or color grade/gray scale data.

Returned Format [:WAVeform:YUNits] {UNKNown | VOLT | OHM | SECond | REFLect | CONStant | AMP | WATT}<NL>
Example This example returns the Y-axis units of the currently selected waveform source to the

string variable, Unit$, then prints the contents of the variable to the computer's screen.

10 DIM Unit$[50] !Dimension variable
20 OUTPUT 707;":WAVEFORM:YUNITS?"
30 ENTER 707;Unit$
40 PRINT Unit$
50 END

23

DISPlay 23-2
LOAD 23-2
SAVE 23-3
XOFFset 23-3
XRANge 23-4
YOFFset 23-4
YRANge 23-4

Waveform Memory Commands

23-2

Waveform Memory Commands
DISPlay

Waveform Memory Commands

The Waveform Memory Subsystem commands allow you to save and display wave-
forms, memories, and functions.

DISPlay
Command :WMEMory<N>:DISPlay {{ON|1}|{OFF|0}}

This command enables or disables the viewing of the selected waveform memory.

N O T E This command operates on waveform data which is not compatible with Jitter Mode. Do
not use this command Jitter Mode. It generates a “Settings conflict” error.

<N> The memory number is an integer from 1 to 4.

Example This example turns on the waveform memory 1 display.

10 OUTPUT 707;":WMEMORY1:DISPLAY ON"
20 END

Query :WMEMory<N>:DISPlay?
The query returns the state of the selected waveform memory.

Returned Format [:WMEMory<N>:DISPlay] {1 | 0}<NL>

LOAD
Command :WMEMory<N>:LOAD <file_name>

This command loads an analyzer waveform memory location with a waveform from a
file which has an internal waveform format (extension .wfm) or a verbose/yvalues
waveform format (extension .txt). You can load the file either from the D:\ drive or A:\
drive. See the examples below.

<N> Indicates the Waveform Memory Number

In Waveform Memory commands, the <N> in WMEMory<N> represents the waveform memory num-
ber (1-4).

23-3

Waveform Memory Commands
SAVE

The scope assumes the default path for waveforms is D:\User Files\Waveforms. To use a
different path, please specify the path and file name completely.

N O T E This command operates on waveform data which is not compatible with Jitter Mode. Do
not use this command Jitter Mode. It generates a “Settings conflict” error.

<N> The memory number is an integer from 1 to 4.

<file_name> Specifies the file to load, and has either a .wfm or .txt extension.

Examples This example loads waveform memory 4 with a file that has the internal waveform for-
mat.

10 OUTPUT 707;":WMEMORY4:LOAD ""D:\User Files\Waveforms\waveform.wfm"""
20 END
This example loads waveform memory 3 with a file on the floppy drive that has the
internal waveform format.

10 OUTPUT 707;":WMEMORY3:LOAD ""a:\waveform.wfm"""
20 END

Related Commands DISK:LOAD, DISK:STORe

SAVE
Command :WMEMory<N>:SAVE {CHANnel<N> | WMEMory<N> | FUNCtion<N> | RESPonse<N>}

This command stores the specified channel, waveform memory, TDR response, or func-
tion to the waveform memory. The channel or function must be displayed (DISPlay set
to ON) or an error status is returned. You can save waveforms to waveform memories
whether the waveform memory is displayed or not.

N O T E This command operates on waveform data which is not compatible with Jitter Mode. Do
not use this command Jitter Mode. It generates a “Settings conflict” error.

<N> An integer from 1 to 4.

Example This example saves channel 1 to waveform memory 4.

10 OUTPUT 707;":WMEMORY4:SAVE chan1"
20 END

XOFFset
Command :WMEMory<N>:XOFFset <offset_value>

This command sets the x-axis, horizontal position for the selected waveform memory's
display scale. Position is referenced to center screen.

<N> The memory number is an integer from 1 to 4.

<offset_value> The horizontal offset (position) value.

Example This example sets the x-axis, horizontal position for waveform memory 3 to 0.1 sec-
onds (100 ms).

23-4

Waveform Memory Commands
XRANge

10 OUTPUT 707;":WMEMORY3:XOFFSET 0.1"
20 END

Query :WMEMory<N>:XOFFset?
The query returns the current x-axis, horizontal position for the selected waveform
memory.

Returned Format [:WMEMory<N>:XOFFset] <offset_value><NL>

XRANge
Command :WMEMory<N>:XRANge <range_value>

This command sets the x-axis, horizontal range for the selected waveform memory's
display scale. The horizontal scale is the horizontal range divided by 10.

<N> The memory number is an integer from 1 to 4.

<range_value> The horizontal range value.

Example This example sets the x-axis, horizontal range of waveform memory 2 to
435 microseconds.

10 OUTPUT 707;":WMEMORY2:XRANGE 435E-6"
20 END

Query :WMEMory<N>:XRANge?
The query returns the current x-axis, horizontal range for the selected waveform mem-
ory.

Returned Format [:WMEMory<N>:XRANge] <range_value><NL>

YOFFset
Command :WMEMory<N>:YOFFset <offset_value>

This command sets the y-axis (vertical axis) offset for the selected waveform memory.

<N> The memory number is an integer from 1 to 4.

<offset_value> The vertical offset value.

Example This example sets the y-axis (vertical) offset of waveform memory 2 to 0.2V.

10 OUTPUT 707;":WMEMORY2:YOFFSET 0.2"
20 END

Query :WMEMory<N>:YOFFset?
The query returns the current y-axis (vertical) offset for the selected waveform mem-
ory.

Returned Format [:WMEMory<N>:YOFFset] <offset_value><NL>

YRANge
Command :WMEMory<N>:YRANge <range_value>

23-5

Waveform Memory Commands
YRANge

This command sets the y-axis, vertical range for the selected memory. The vertical
scale is the vertical range divided by 8.

<N> The memory number is an integer from 1 to 4.

<range_value> The vertical range value.

Example This example sets the y-axis (vertical) range of waveform memory 3 to 0.2 volts.

10 OUTPUT 707;":WMEMORY3:YRANGE 0.2"
20 END

Query :WMEMory<N>:YRANge?
The query returns the Y-axis, vertical range for the selected memory.

Returned Format [:WMEMory<N>:YRANge] <range_value><NL>

23-6

Waveform Memory Commands
YRANge

Index

Index-1

Numerics
707, 1-15

A
aborting a digitize operation, 1-14, 1-19
Acquire Commands, 6-2

AVERage, 6-2
BEST, 6-2
COUNt, 6-3
LTESt, 6-4
POINts, 6-4
RUNTil, 6-5
SSCReen, 6-6
SSCReen AREA, 6-8
SSCReen IMAGe, 6-8
SWAVeform, 6-9
SWAVeform RESet, 6-10

acquired data
distribution, 14-2
flow, 1-37

acquisition
points, 6-4
record length, 6-4
sample program, 2-8

Acquisition Event Register, 1-30
Acquisition Limits Event Enable regis-

ter, 4-2
Acquisition Limits Event Register, 4-3
address, instrument default, 1-19
advisory line, reading and writing to, 5-2
AEEN, 4-2
AER, 1-30
ALER?, 4-3
ALIGn, 17-3
alphanumeric

characters in embedded string, 1-7
strings, 1-7

AMEThod, 17-3
AMPLitude, 18-5
analyzer, default address, 1-19
ANNotation, 18-4
APOWer, 18-4
AREA, 6-8, 13-2, 15-8, 17-17
Arm Event Register, ARM bit, 3-15
arming the trigger, 1-19
ASCII

and FORMat, 22-7
character 32, 1-4
linefeed, 1-7

attenuation factor, probe, 8-5
auto skew

command, 7-12
automatic measurements, sample pro-

grams, 2-9
AUToscale, 4-3

during initialization, 1-12
in sample program, 2-17

availability of measured data, 1-20
AVERage, and count, 6-2
AXIS, 14-3

B
BANDpass?, 22-4
BANDwidth, 8-2
bandwidth limit, 22-4
basic

command structure, 1-13
operations, 1-2

BEST, 6-2
bit definitions, status reporting, 1-21
BITRate, 18-6
BLANk, 4-4

and VIEW, 4-16
block data, 1-3, 1-16

and DATA, 22-5
in learnstring, 1-3

block diagram, status reporting over-
view, 1-21

BORDer, 14-5
BRATe, 20-2
buffer, output, 1-6, 1-15
buffered responses, 1-46
bus

activity, halting, 1-19
commands, 1-19
management issues, 1-17

BWLimit, 21-3
BYTE and FORMat, 22-8
BYTeorder, 22-4

and DATA, 22-7

C
C sample programs, 2-2
CALibrate, 19-5

CANCel, 19-5
CONTinue, 19-6

calibration
mainframe, 7-2
module, 7-2
probe, 7-4
procedure, 7-13
status, 7-13

Calibration Commands, 7-4
CANCel, 7-5
CONTinue, 7-5
ERATio DLEVel? CHANnel<N>, 7-5
ERATio STARt CHANnel<N>, 7-5
FRAMe LABel, 7-6
FRAMe STARt, 7-6
FRAMe TIME?, 7-6
MODule LRESistance, 7-7
MODule OCONversion?, 7-7
MODule OPOWer, 7-7
MODule OPTical, 7-8
MODule OWAVelength, 7-8
MODule STATus?, 7-8
MODule TIME?, 7-9
MODule VERTical, 7-9
OUTPut, 7-9
PROBe, 7-10
PROBe CHANnel<N>, 7-10
Recommend?, 7-10
SAMPlers, 7-11
SDONe?, 7-11
SKEW, 7-12
SKEW AUTO, 7-12
STATus?, 7-13

CANCel, 7-5
CDIRectory, 10-2
CDISplay (Clear DISplay), 4-4
center screen voltage, 8-5
CGRade, 18-20, 22-14

AMPLitude, 18-5
BITRate, 18-6
COMPlete, 18-6
CROSsing, 18-8
DCDistortion, 18-9
DCYCle, 18-9

Index-2

Index

EHEight, 18-10
ERATio, 18-11
ESN, 18-12
EWIDth, 18-12
JITTer, 18-13
LEVels?, 11-2
OLEVel, 18-14
PEAK?, 18-15
SOURce, 18-16
ZLEVel, 18-17

Channel Commands, 8-2
BANDwidth, 8-2
DISPlay, 8-2
FDEScription?, 8-3
FILTer, 8-3
FSELect, 8-4
OFFSet, 8-5
PROBe, 8-5
PROBe CALibrate, 7-10, 8-6
PROBe SELect, 8-6
RANGe, 8-7
SCALe, 8-8
TDRSkew, 8-8
UNITs, 8-9
UNITs ATTenuation, 8-9
UNITs OFFSet, 8-9
WAVelength, 8-10

channel-to-channel skew factor, 7-12
character program data, 1-7
CLEar, 18-17
clearing

buffers, 1-19
error queue, 1-32, 1-60
pending commands, 1-19
registers and queues, 1-32
Standard Event Status Register, 1-28,

3-4
status data structures, 3-3
TRG bit, 1-27

clipped signals, and measurement er-
ror, 18-4

clock recovery, 9-2
data rate, 9-3
phase locked status, 9-3
signal present status, 9-5

Clock Recovery Commands, 9-2
LOCKed?, 9-3
RATE, 9-3
SPResent?, 9-5

Clock Recovery Event Enable Register,
4-5

Clock Recovery Event Register, 1-29,
4-6

*CLS (Clear Status), 3-3
CME bit, 3-4–3-5
color grade database

downloading, 1-48
using multiple databases, 1-47

combining
commands in same subsystem, 1-5
compound and simple commands, 1-8
long- and short-form headers, 1-6

Command
AEEN (Acquisition Limits Event En-

able register), 4-2
ALIGn, 17-3
AMEThod, 17-3
ANNotation, 18-4
APOWer, 18-4
AREA, 6-8, 13-2, 15-8, 17-17
AUToscale, 4-3
AVERage, 6-2
AXIS, 14-3
BANDwidth, 8-2
BEST, 6-2
BLANk, 4-4
BRATe, 20-2
BYTeorder, 22-4
CANCel, 7-5
CDIRectory, 10-2
CDISplay, 4-4
CGRade BITRate, 18-6
CGRade COMPlete, 18-6
CGRade CROSsing, 18-8
CGRade DCDistortion, 18-9
CGRade EHEight, 18-10
CGRade ERATio, 18-11
CGRade ESN, 18-12
CGRade EWIDth, 18-12
CGRade JITTer, 18-13
CGRade OLEVel, 18-14
CGRade ZLEVel, 18-16, 18-17
CHANnel PROBe, 8-5
CHANnel UNITs, 8-9
CLEar, 18-17
CLear Status (*CLS), 3-3
COMMents, 4-5
CONNect, 11-2
CONTinue, 7-5
COUNt, 6-3
CRATio, 18-7
CREE (Clock Recovery Event Enable

Register), 4-5
DATA, 22-5
DATE, 5-2
DCOLor, 11-3
DEFine, 18-18
DEFine CGRade, 18-19, 18-20
DEFine DELTatime, 18-19
DELete, 10-3, 17-7
DELTatime, 18-20
DIGitize, 1-13, 4-6

DISPlay, 8-2, 12-2, 23-2
DPRinter, 13-2
DSP, 5-2
DUTYCycle, 18-9
DUTYcycle, 18-21
ERATio STARt, 7-5
Event Status Enable (*ESE), 3-3
Event Status Register (*ESR?), 3-4
EXIT, 17-7
FACTors, 13-3
FAIL, 15-2
FALLtime, 18-22
FILTer, 8-3
FORMat, 22-7
FRAMe LABel, 7-6
FRAMe STARt, 7-6
FREQuency, 18-23
FSELect, 8-4
GRATicule, 11-3
GRATicule INTensity, 11-3
HEADer, 5-5
HORizontal, 12-3
HORizontal POSition, 12-4
HORizontal RANGe, 12-4
HYSTeresis, 21-4
Identification Number (*IDN?), 3-5
IMAGe, 6-8, 13-4, 15-8, 17-17
INVert, 12-5
JEE (Jitter Event Enable Register),

4-8
LABel, 11-5
LEVel, 21-5
LLIMit, 15-3
LOAD, 10-4, 17-7, 23-2
LONGform, 5-5
LTEE (Limit Test Event Enable regis-

ter), 4-9
MAGNify, 12-6
MASK DELete, 17-8
MAXimum, 12-6
MDIRectory, 10-5
MINimum, 12-7
MMARgin PERCent, 17-8
MMARgin STATe, 17-9
MNFound, 15-4
MODE, 14-3
MODule LRESistance, 7-7
MODule OPOWer, 7-7
MODule OPTical, 7-8
MODule OWAVelength, 7-8
MODule VERTical, 7-9
MTEE (Mask Test Event Enable Reg-

ister), 4-10
NWIDth, 18-35
OFACtor, 18-14
OFFSet, 8-5, 12-7

Index-3

Index

OPEE, 4-11
Operation Complete (*OPC), 3-7
Option (*OPT), 3-8
OUTPut, 7-9
OVERshoot, 18-36
PERiod, 18-37
PERSistence, 11-6
POINts, 6-4
POSition, 20-2
PREamble, 22-9
PRESet, 19-3
PRINt, 4-12
PROBe CALibrate, 8-6
PROBe CHANnel<N>, 7-10
PROBe SELect, 8-6
PROPagation, 16-2
PWIDth, 18-16, 18-37
RANGe, 8-7, 12-8, 20-6
RATE, 9-3, 19-3
Recall (*RCL), 3-8
RECall SETup, 4-12
REFerence, 20-6
Reset (*RST), 3-9
RESPonse, 19-4
RESPonse CALibrate, 19-5
RESPonse CALibrate CANCel, 19-5
RESPonse CALibrate CONTinue,

19-6
RESPonse HORizontal, 19-6
RESPonse HORizontal POSition, 19-7
RESPonse HORizontal RANGe, 19-7
RESPonse RISetime, 19-8
RESPonse TDRDest, 19-9
RESPonse TDRTDT, 19-9
RESPonse TDTDest, 19-10
RESPonse VERTical, 19-11
RESPonse VERTical OFFSet, 19-12
RESPonse VERTical RANGe, 19-12
RISetime, 18-41
RPANnotation, 16-3
RUN, 4-12
RUNTil, 6-5, 15-5, 17-9
RUNTil (RUMode), 15-5
SAMPlers, 7-11
SAVE, 23-3
Save (*SAV), 3-13
SCALe, 8-8, 20-7
SCALe DEFault, 17-10
SCALe SIZE, 14-4
SCALe X1, 17-12
SCALe XDELta, 17-12
SCALe Y1, 17-13
SCALe Y2, 17-14
SCALe YTRack, 17-15
SCOLor, 11-8
SCRatch, 18-41

SENDvalid, 18-42
SERial, 4-13
Service Request Enable (*SRE), 3-13
SETup, 5-7
SIMage, 10-5
SINGle, 4-13
SKEW, 7-12
SLOPe, 21-7
SOURce, 15-5, 18-42, 21-7
SOURce CGRade, 22-14
SSAVer, 11-9
SSAVer AAFTer, 11-9
SSCReen, 6-6, 15-6, 17-15
SSCReen AREA, 6-8, 15-8, 17-17
SSCReen IMAGe, 6-8, 15-8, 17-17
SSUMmary, 15-9, 17-18
STARt, 17-18
STATe, 16-3
Status Byte (*STB?), 3-14
STIMulus, 19-13
STOP, 4-14
STORe, 10-6
STORe SETup, 4-14
STORe WAVEform, 4-14
SUBTract, 12-8
SWAVeform, 6-9, 15-9, 17-19
SWAVeform RESet, 6-10, 15-10,

17-20
TDRSkew, 8-8
TEST, 15-11, 17-20
TIME, 5-8
TMAX, 18-44
TMIN, 18-45
Trigger (*TRG), 3-15
TRIGger ATTenuation, 21-2
UEE (User Event Enable register),

4-15
ULIMit, 15-11
UNITs, 20-7
UNITs ATTenuation, 8-9
UNITs OFFSet, 8-9
VAMPlitude, 18-46
VAVerage, 18-47
VBASe, 18-48
VERSus, 12-9
VERTical, 12-9
VERTical OFFSet, 12-10
VERTical RANGe, 12-11
VIEW, 4-16
VMAX, 18-48
VMIN, 18-49
VPP, 18-50
VRMS, 18-50
VTOP, 18-52
Wait-to-Continue (*WAI), 3-16
WAVeform BYTeorder, 22-4

WAVeform DATA, 22-5
WAVeform FORMat, 22-7
WAVeform PREamble, 22-9
WAVeform SOURce, 22-13
WAVelength, 8-10
WINDow BORDer, 14-5
WINDow DEFault, 14-5
WINDow SOURce, 14-5
WINDow X1Position, 14-6
WINDow X2Position, 14-7
WINDow Y1Position, 14-7
WINDow Y2Position, 14-8
X1Position, 16-4
X1Y1source, 16-5
X2Position, 16-5
X2Y2source, 16-6
XOFFset, 23-3
XRANge, 23-4
Y1Position, 16-7
Y2Position, 16-8
YALign, 17-21
YOFFset, 23-4
YRANge, 23-4

command
data concepts, 1-18
embedded in program messages, 1-8
error, 1-60
error status bit, 1-22
execution and order, 1-35
mode, 1-18
new, 1-56
structure, 1-13
trees, 1-38–1-41
types, 1-39

commas and spaces, 1-4
comma-separated, variable file format,

2-15
COMMents, 4-5
Common Commands, 3-2

Clear Status (*CLS), 3-3
Event Status Enable (*ESE), 3-3
Event Status Register (*ESR), 3-4
Identification Number (*IDN), 3-5
Learn (*LRN), 3-6
Operation Complete (*OPC), 3-7
Option (*OPT?), 3-8
Recall (*RCL), 3-8
Reset (*RST), 3-9
Save (*SAV), 3-13
Service Request Enable (*SRE), 3-13
Status Byte (*STB?), 3-14
Test (*TST?), 3-16
Trigger (*TRG), 3-15
Wait-to-Continue (*WAI), 3-16

common commands
header, 1-5

Index-4

Index

within a program message, 3-2
communicating over the bus, 1-18
COMPlete, 18-6
compound

command header, 1-4
queries, 1-35

concurrent commands, 1-46
CONNect, 11-2
CONTinue, 7-5
controller code and capability, 1-18
conventions of programming, 1-37
converting waveform data

from data value to Y-axis units, 22-3
sample program, 2-14

COUNt, 6-3
FAILures?, 17-4
FSAMples?, 17-5
HITS?, 17-5
SAMPles?, 17-6
WAVeforms?, 17-6

COUNt?, 22-5
CRATio, 18-7
CREE, 4-5
CRER, 1-29
CRER?, 4-6
CROSsing, 18-8

D
DATA, 22-5
data

acquisition, 22-2
conversion, 22-3
flow, 1-37
in a learnstring, 1-3
in a program, 1-4
mode, 1-18
rate, clock recovery, 9-3
rate, setting, 9-2
structures, status reporting, 1-20, 4-2
transmission mode and FORMat, 22-7

DATA?, 11-3
database

downloading, 1-48
DATE, 5-2
DCDistortion, 18-9
DCDRatio, 21-3
DCDRatio AUTodetect, 21-4
DCOLor, 11-3
DCYCle, 18-9
DDE bit, 3-4–3-5
decimal 32 (ASCII space), 1-4
decision chart, status reporting, 1-33
DEFault, 14-5, 17-10
default

GPIB conditions, 1-17

instrument address, 1-19
DEFine, 18-18

CGRade, 18-20
defining functions, 12-2
definite length block response data,

1-16
DELete, 10-3, 17-7–17-8
deleting files, 10-3
DELTatime, 18-20
device

address, 1-3, 1-18
clear (DCL), 1-19
clear code and capability, 1-18
dependent data, 1-16
or analyzer-specific error, 1-61
trigger code and capability, 1-18

Device Dependent Error (DDE), Status
Bit, 1-22

DIGitize, 4-6
digitize, aborting, 1-19
DIRectory?, 10-3
disabling serial poll, 1-19
Disk Commands, 10-2

CDIRectory, 10-2
DELete, 10-3
DIRectory?, 10-3
LOAD, 10-4
MDIRectory, 10-5
PWD?, 10-5
SIMage, 10-5
STORe, 10-6

DISPlay, 8-2, 12-2, 23-2
Display Commands, 11-2

CGRade LEVels?, 11-2
CONNect, 11-2
DATA?, 11-3
DCOLor, 11-3
GRAPh, 11-4
GRATicule, 11-3
GRATicule INTensity, 11-3
LABel, 11-5
LABel DALL, 11-6
LAYout, 11-5
PERSistence, 11-6
RRATe, 11-7
SCOLor, 11-8
SSAVer, 11-9
SSAVer AAFTer, 11-9
YSCale, 11-5

display persistence, 11-6
DLEVel?, 7-5
DPRinter, 13-2
Driver Electronics code and capability,

1-18
DSP (display), 5-2
duplicate mnemonics, 1-5

duration between data points
and XINCrement, 22-16

DUTYcycle, 18-21

E
EHEight, 18-10
embedded

commands, 1-8
strings, 1-2, 1-3, 1-7

Enable Register, 3-2
End Of String (EOS), 1-8
End Of Text (EOT), 1-8
End-Or-Identify (EOI), 1-7
EOI and IEEE 488.2, 1-46
ERATio, 18-11

DLEVel? CHANnel, 7-5
STARt CHANnel, 7-5
STATus?, 7-6

error
checking, sample program, 2-11
exceptions to protocol, 1-35
in measurements, 18-3
messages, 1-60
messages table, 1-62
numbers, 1-60
query interrupt, 1-6, 1-15

error queue, 1-60
and status reporting, 1-32
overflow, 1-60

ERRor?, 5-3
ESB (Event Status Bit), 1-22, 3-14–3-15
ESB (Event Summary Bit), 3-3
*ESE (Event Status Enable), 3-3
ESN, 18-12
*ESR? (Event Status Register), 3-4
ESR (Standard Event Status Register),

1-28
event

monitoring, 1-20
registers default, 1-17

Event Status Bit (ESB), 1-22
Event Status Enable (*ESE)

Status Reporting, 1-28
Event Summary Bit (ESB), 3-3
EWIDth, 18-12
example programs, 1-13

C and BASIC, 2-2
in initialization, 1-13

exceptions to protocol, 1-35
EXE bit, 3-4–3-5
execution

errors, 1-61
errors, and command errors, 1-61
of commands and order, 1-35

Index-5

Index

Execution Error (EXE), Status Bit,
1-22

EXIT, 17-7
exponential notation, 1-7
extensions, file, 1-8

F
FACTors, 13-3
FAIL, 15-2
FAILures?, 17-4
fall time measurement setup, 18-2
FALLtime, 18-22
FDESCription?, 8-3
file

locations, 1-10
names, 1-8
types, 1-8

FILTer, 8-3
flow of acquired data, 1-37
FORMat, 22-7

and DATA, 22-7
formatting query responses, 5-2
fractional values, 1-7
FRAMe

LABel, 7-6
STARt, 7-6
TIME?, 7-6

FREQuency, 18-23
frequency measurement setup, 18-2
FSAMples?, 17-5
FSELect, 8-4
full-scale vertical axis, 8-7
FUNCtion, 12-3
Function Commands, 12-2

DISPlay, 12-2
FUNCtion?, 12-3
HORizontal, 12-3
HORizontal POSition, 12-4
HORizontal RANGe, 12-4
INVert, 12-5
MAGNify, 12-6
MAXimum, 12-6
MINimum, 12-7
OFFSet, 12-7
RANGe, 12-8
SUBTract, 12-8
VERSus, 12-9
VERTical, 12-9
VERTical OFFSet, 12-10
VERTical RANGe, 12-11

functional elements of protocol, 1-34
functions

and vertical scaling, 12-8
combining in instructions, 1-5
time scale, 12-2

G
GATed, 21-4
general bus management, 1-17
generating service request

sample program, 2-16–2-19
GPIB

default startup conditions, 1-17
interface connector, 1-17

GRAPh, 11-4
GRATicule, 11-3

HARDcopy AREA, 6-8, 13-2, 15-8,
17-17

group execute trigger (GET), 1-19

H
halting bus activity, 1-19
handshake code and capabilities, 1-18
hardcopy

of the screen, 13-2
output and message termination, 1-35

Hardcopy Commands, 13-2
AREA, 13-2
DPRinter, 13-2
FACTors, 13-3
IMAGe, 6-8, 13-4, 17-17
PRINters?, 13-4

HEADer, 5-5
headers, 1-3

stripped, 2-14
types, 1-4
within instruction, 1-3

Histogram Commands, 14-2
AXIS, 14-3
MODE, 14-3
SCALe SIZE, 14-4
SOURce, 14-4
WINDow BORDer, 14-5
WINDow DEFault, 14-5
WINDow SOURce, 14-5
WINDow X1Position, 14-6
WINDow X2Position, 14-7
WINDow Y1Position, 14-7
WINDow Y2Position, 14-8

HITS?, 17-5, 18-24
HORizontal, 12-3, 19-6

POSition, 12-4, 19-7
RANGe, 12-4, 19-7

horizontal
functions, controlling, 20-2
offset, and XOFFset, 23-3
range, and XRANge, 23-4
scaling and functions, 12-2

host language, 1-3
hue, 11-9
HYSTeresis, in TRIGger, 21-4

I
*IDN? (Identification Number), 3-5
IEEE 488.1, 1-34

and IEEE 488.2 relationship, 1-34
definitions for interface, 1-17

IEEE 488.2, 1-34
compliance, 1-34
conformity, 1-2
standard, 1-2
Standard Status Data Structure Mod-

el, 1-20
IMAGe, 6-8, 13-4, 15-8, 17-17
image specifiers

and DATA, 22-6
and PREamble, 22-10
-K, 5-8

individual commands language, 1-2
infinity representation, 1-45
initialization, 1-12

event status, 1-20
instrument sample program, 2-7, 2-17
IO routine, 2-6
sample program, 2-5

INPut, 9-2
input buffer, 1-34

clearing, 1-19
default condition, 1-35

instruction headers, 1-3
instrument

address, 1-18
default address, 1-19
status, 1-16

integer definition, 1-7
intensity, 11-4
interface

capabilities, 1-18
clear (IFC), 1-19
functions, 1-17
initializing, 1-12
select code, 1-19

interpreting commands, parser, 1-35
interrupted query, 1-6, 1-15
INVert, 12-5
inverting functions, 12-5

J
JER?, 4-8
JITTer, 15-3, 18-13
JITTer DCD?, 18-29
JITTer DDJ?, 18-29
JITTer DDJVsbit?, 18-30
JITTer DJ?, 18-30
JITTer EBITs?, 18-30
JITTer EDGE?, 18-31
Jitter Event Enable Register, 4-8

Index-6

Index

Jitter Event Register, 4-8
JITTer ISI?, 18-31
JITTer LEVel DEFine, 18-32
JITTer LEVel?, 18-31
Jitter mode

unavailable commands, 1-58
JITTer PATTern?, 18-32
JITTer PJ?, 18-33
JITTer PJRMS?, 18-33
JITTer RJ?, 18-33
JITTer SIGNal AUTodetect?, 18-34
JITTer SIGNal?, 18-34
JITTer TJ?, 18-34
JITTer UNITs, 18-35

K
-K, 5-8
K, and DATA, 22-6

L
LABel, 7-6, 11-5
language for program examples, 1-2
LAYout, 11-5
LBANdwidth, 9-2
LCL, 1-29
Learn (*LRN), 3-6
learnstring block data, 1-3
LER?, 4-8, 4-9
LEVel, in TRIGger, 21-5
Limit Test Commands, 15-2

FAIL, 15-2
JITTer, 15-3
LLIMit, 15-3
MNFound, 15-4
RUNtil, 15-5
SOURce, 15-5
SSCReen, 15-6
SSCReen AREA, 15-8
SSCReen IMAGe, 15-8
SSUMmary, 15-9
SWAVeform, 6-9, 15-9
SWAVeform RESet, 15-10
TEST, 15-11
ULIMit, 15-11

Limit Test Event Enable register, 4-9
Limit Test Event Register, 1-30, 4-10
linefeed, 1-7
list of error messages, 1-62
listener

code and capability, 1-18
unaddressing all, 1-19

LLIMit, 15-3
LOAD, 10-4, 17-7, 23-2
load resistance, 7-7
Local Event Register, 1-29, 4-8, 4-9

locked status, querying, 9-2
LOCKed?, 9-3
LONGform, 5-5
long-form headers, 1-6
lowercase, 1-6

headers, 1-6
LRESistance, 7-7
*LRN (Learn), 3-6
*LRN?, and SYSTem SETup?, 5-8
LSBFirst, and BYTeorder, 22-4
LTEE, 4-9
LTER, 1-30
LTER?, 4-10
LTESt, 6-4
luminosity, 11-9

M
M1S?, 18-24
M2S?, 18-25
M3S?, 18-25
MAGNify, 12-6
making measurements, 18-3
managing bus issues, 1-17
Marker Commands, 16-2

PROPagation, 16-2
RPANnotation, 16-3
STATe, 16-3
X1Position, 16-4
X1Y1source, 16-5
X2Position, 16-5
X2Y2source, 16-6
XDELta?, 16-6
XUNits, 16-7
Y1Position, 16-7
Y2Position, 16-8
YDELta?, 16-8
YUNits, 16-8

mask
file format, 17-3
handling, 17-2

MASK DELete, 17-8
Mask Test Commands, 17-2

ALIGn, 17-3
AMEThod, 17-3
COUNt FAILures?, 17-4
COUNt FSAMples?, 17-5
COUNt HITS?, 17-5
COUNt SAMPles?, 17-6
COUNt WAVeforms?, 17-6
DELete, 17-7
EXIT, 17-7
LOAD, 17-7
MASK DELete, 17-8
MMARgin PERCent, 17-8
MMARgin STATe, 17-9

RUNTil, 17-9
Save, 17-10
SCALe DEFault, 17-10
SCALe MODE, 17-11
SCALe X1, 17-12
SCALe XDELta, 17-12
SCALe Y1, 17-13
SCALe Y2, 17-14
SCALe YTRack, 17-15
SOURce, 17-14
SSCReen, 17-15
SSCReen AREA, 17-17
SSCReen IMAGe, 17-17
SSUMmary, 17-18
STARt, 17-18
SWAVeform, 17-19
SWAVeform RESet, 17-20
TEST, 17-20
TITLe?, 17-21
YALign, 17-21

Mask Test Event Enable Register, 4-8,
4-10

Mask Test Event Register, 1-31, 4-11
mask, Service Request Enable Register,

3-13
Master Summary Status (MSS)

and *STB, 3-14
Status Bit, 1-22

MAV (Message Available), 1-22
bit, 3-14–3-15

MAXimum, 12-6
MDIRectory, 10-5
MEAN?, 18-26
MEASure Commands

JITTer DCD?, 18-29
JITTer DDJ?, 18-29
JITTer DDJVsbit?, 18-30
JITTer DJ?, 18-30
JITTer EBITs?, 18-30
JITTer EDGE?, 18-31
JITTer ISI?, 18-31
JITTer LEVel DEFine, 18-32
JITTer LEVel?, 18-31
JITTer PATTern?, 18-32
JITTer PJ?, 18-33
JITTer PJRMS?, 18-33
JITTer RJ?, 18-33
JITTer SIGNal AUTodetect?, 18-34
JITTer SIGNal?, 18-34
JITTer TJ?, 18-34
JITTer UNITs, 18-35

Measure Commands, 18-2
ANNotation, 18-4
APOWer, 18-4
CGRade AMPLitude, 18-5
CGRade BITRate, 18-6

Index-7

Index

CGRade COMPlete, 18-6
CGRade CRATio, 18-7
CGRade CROSsing, 18-8
CGRade DCDistortion, 18-9
CGRade DCYCle, 18-9
CGRade DUTYCycle, 18-10
CGRade EHEight, 18-10
CGRade ERATio, 18-11
CGRade ESN, 18-12
CGRade EWIDth, 18-12
CGRade JITTer, 18-13
CGRade OFACtor, 18-14
CGRade OLEVel, 18-14
CGRade PEAK?, 18-15
CGRade PWIDth, 18-16
CGRade SOURce, 18-16
CGRade ZLEVel, 18-17
CLEar, 18-17
DEFine, 18-18
DEFine CGRade, 18-19, 18-20
DEFine DELTatime, 18-19
DELTatime, 18-20
DUTYcycle, 18-21
FALLtime, 18-22
FREQuency, 18-23
HISTogram HITS?, 18-24
HISTogram M1S?, 18-24
HISTogram M2S?, 18-25
HISTogram M3S?, 18-25
HISTogram MEAN?, 18-26
HISTogram MEDian?, 18-26
HISTogram PP?, 18-27
HISTogram SCALe?, 18-28
HISTogram STDDev?, 18-29, 18-30
NWIDth, 18-35
OVERshoot, 18-36
PERiod, 18-37
PWIDth, 18-37
RESults?, 18-38
RISetime, 18-41
SCRatch, 18-41
SENDvalid, 18-42
SOURce, 18-42
TEDGe?, 18-43
TMAX, 18-44
TMIN, 18-45
TVOLt?, 18-45
VAMPlitude, 18-46
VAVerage, 18-47
VBASe, 18-48
VMAX, 18-48
VMIN, 18-49
VPP, 18-50
VRMS, 18-50
VTIMe?, 18-51
VTOP, 18-52

measurement
error, 18-3
setup, 18-2
source, 18-42

MEDian?, 18-26
message

communications and system func-
tions, 1-34

exchange protocols of IEEE 488.2,
1-34

queue, 1-32
termination with hardcopy, 1-35

Message (MSG), Status Bit, 1-22
Message Available (MAV)

and *OPC, 3-8
Status Bit, 1-22

MINimum, 12-7
MMARgin

PERCent, 17-8
STATe, 17-9

mnemonic truncation, 1-38
MNFound, 15-4
MODE, 5-6, 14-3
MODel?, 4-10
MODule

LRESistance, 7-7
OCONversion?, 7-7
OPOWer, 7-7
OPTical, 7-8
OWAVelength, 7-8
STATus?, 7-8
TIME?, 7-9
VERTical, 7-9

monitoring events, 1-20
MSBFirst, and BYTeorder, 22-4
MSG bit, 3-14–3-15
MSS bit and *STB, 3-14
MTEE, 4-8, 4-10
MTER, 1-31
MTER?, 4-11
multiple

numeric variables, 1-16
program commands, 1-8
queries, 1-16
subsystems, 1-8

multiple databases, 1-47

N
new commands, 1-56
NL (New Line), 1-7
numeric

program data, 1-7
variable example, 1-15
variables, 1-15

NWIDth, 18-35

O
OCONversion?, 7-7
OFACtor, 18-14
OFFSet, 8-5, 12-7, 19-12
OLEVel, 18-14
*OPC (Operation Complete), 3-7
OPC bit, 3-4–3-5
OPEE, 4-11
OPER bit, 3-14–3-15
OPER?, 4-12
operands and time scale, 12-2
operating the disk, 10-2
Operation Complete (*OPC), 3-7

Status Bit, 1-22
operation status, 1-20
Operation Status Register, 1-29
OPOWer, 7-7
OPR, 1-29
*OPT (Option), 3-8
OPTical, 7-8
options, program headers, 1-6
order of commands and execution, 1-35
OUTPut, 7-9
output buffer, 1-6, 1-15
output queue, 1-6, 1-32

clearing, 1-19
default condition, 1-35
definition, 1-34

OUTPUT statement, 1-3
overlapped and sequential commands,

1-45
OVERshoot, 18-36
OWAVelength, 7-8

P
Parallel Poll code and capability, 1-18
parametric measurements, 18-2
parser, 1-12, 1-35

default condition, 1-35
definition, 1-35
resetting, 1-19

passing values across the bus, 1-6
PEAK?, 18-15
peak-to-peak voltage, and VPP, 18-50
pending commands, clearing, 1-19
PERCent, 17-8
PERiod, 18-37
period measurement setup, 18-2
PERsistence, 11-6
phase lock status, 9-3
PLENgth, 21-5
PLENgth AUTodetect, 21-5
PLOCk, 21-6
PLOCk AUTodetect, 21-6
POINts, 6-4

Index-8

Index

POINts?, 22-9
PON bit, 3-5
POSition, 19-7, 20-2
pound sign (#) and block data, 1-16
Power On (PON) status bit, 1-21, 3-4
power-up condition of GPIB, 1-17
PP?, 18-27
PREamble, 22-9

and DATA, 22-7
Precision Timebase Event Register,

1-31
PRESet, 19-3
PRINt, 4-12
PRINters?, 13-4
printing

specific screen data, 13-2
the screen, 13-2

probe
attenuation factor, 8-5
calibration, 7-4

PROBe CALibrate, 7-10, 8-6
PROBe CHANnel, 7-10
PROBe SELect, 8-6
programming

basics, 1-2
conventions, 1-37
data, 1-4
example, 1-13
examples, language, 1-2
getting started, 1-12
header options, 1-6
message terminator, 1-7
overview, initialization example, 1-13

PROPagation, 16-2
protocol, exceptions and operation,

1-35
PTER, 1-31
pulse width measurement setup, 18-2
PWD?, 10-5
PWIDth, 18-16, 18-37

Q
quantization levels, 2-14
Query, 1-3, 1-5

*ESE? (Event Status Enable), 3-3
*ESR? (Event Status Register), 3-4
*SRE?, 3-13
*STB? (Status Byte), 3-14
AEEN?, 4-2
ALER? (Acquisition Limits Event

Register), 4-3
AMEThod?, 17-4
AMPLitude?, 18-5
ANNotation?, 18-4
APOWer?, 18-5

AREA?, 6-8, 13-2, 15-8, 17-17
AVERage?, 6-2
AXIS?, 14-3
BANDpass?, 22-4
BANDwidth?, 8-2
BEST?, 6-3
BORDer?, 14-5
BRATe?, 20-2
BWLimit?, 21-3
BYTeorder?, 22-4
CGRade AMPLitude?, 18-5
CGRade BITRate, 18-6
CGRade COMPlete?, 18-7
CGRade CROSsing?, 18-8
CGRade DCDistortion?, 18-9
CGRade EHEight?, 18-10
CGRade ERATio?, 18-11
CGRade EWIDth?, 18-13
CGRade JITTer?, 18-13
CGRade LEVels?, 11-2
CGRade PEAK?, 18-15
CGRade QFACtor?, 18-12, 18-15,

18-17
COMMents?, 4-5
CONNect?, 11-3
COUNt FAILures?, 17-4
COUNt FSAMples?, 17-5
COUNt HITS?, 17-5
COUNt SAMPles?, 17-6
COUNt WAVeforms?, 17-6
COUNt?, 6-3, 22-5
CRATio, 18-7
CREE?, 4-6
CRER?, 4-6
DATA?, 11-3, 22-6
DATE?, 5-2
DELTatime, 18-21
DIRectory?, 10-3
DISPlay?, 8-3, 12-2, 23-2
DLEVel?, 7-5
DPRinter?, 13-3
DSP?, 5-3
DUTYCycle, 18-10
DUTYcycle?, 18-22
ERATio DLEVel?, 7-5
ERRor?, 5-3
FACTors?, 13-3
FAIL?, 15-2
FALLtime?, 18-22
FDEScription?, 8-3
FORMat?, 22-8
FRAMe TIME?, 7-6
FREQuency?, 18-23
FUNCtion?, 12-3
GRATicule?, 11-4
HEADer?, 5-5

HISTogram M1S?, 18-24
HISTogram M2S?, 18-25
HISTogram M3S?, 18-25
HISTogram MEAN?, 18-26
HISTogram MEDian?, 18-26
HISTogram PP?, 18-27
HISTogram SCALe?, 18-28
HISTogram STDDev?, 18-29, 18-32,

18-33, 18-34
HITS?, 18-24
HORizontal POSition?, 12-4
HORizontal RANGe?, 12-5
HORizontal?, 12-4
Identification Number (*IDN?), 3-5
IMAGe?, 6-8, 13-4, 15-8, 17-17
Learn (*LRN?), 3-6
LER? (Local Event Register), 4-8, 4-9
LLIMit?, 15-3
LOCKed?, 9-3
LONGform?, 5-6
LTEE?, 4-9
LTER? (Limit Test Event Register),

4-10
MEASure FALLtime?, 18-22
MMARgin PERCent?, 17-8
MMARgin STATe?, 17-9
MNFound?, 15-4
MODE?, 5-6, 14-4
MODel?, 4-10
MODule LRESistance?, 7-7
MODule OCONversion?, 7-7
MODule STATus?, 7-8
MODule TIME?, 7-9
MTEE?, 4-8, 4-11
MTER? (Mask Test Event Register),

4-11
NWIDth?, 18-35
OFACtor, 18-14
OFFSet?, 8-5, 12-7
OPEE?, 4-11
OPER?, 4-12
Option (*OPT?), 3-8
OUTPut?, 7-9
OVERshoot?, 18-36
PERiod?, 18-37
PERSistence?, 11-7
POINts?, 6-5, 22-9
POSition?, 20-3
PREamble?, 22-10
PRINters?, 13-4
PROPagation?, 16-2
PWD?, 10-5
PWIDth, 18-16
PWIDth?, 18-38
RANGe?, 8-7, 12-8, 20-6
RATE?, 9-4, 19-2, 19-4

Index-9

Index

Recommend?, 7-10
REFerence?, 20-6
RESPonse HORizontal POSition?,

19-7
RESPonse HORizontal RANGe?, 19-8
RESPonse HORizontal?, 19-6
RESPonse RISetime?, 19-9
RESPonse TDRDest?, 19-9
RESPonse TDTDest?, 19-11
RESPonse VERTical OFFSet?, 19-12
RESPonse VERTical RANGe?, 19-13
RESPonse VERTical?, 19-11
RESPonse?, 19-4
RESults?, 18-38
RISetime?, 18-41
RUNTil?, 6-6, 15-5, 17-10
SAMPlers?, 7-11
SCALe SIZE?, 14-4
SCALe SOURce?, 17-11
SCALe X1?, 17-12
SCALe XDELta?, 17-13
SCALe Y1?, 17-13
SCALe Y2?, 17-14
SCALe?, 8-8, 20-7
SCOLor?, 11-9
SDONe?, 7-11
SENDvalid?, 18-42
SERial?, 4-13
SETup?, 5-8
SKEW?, 7-12
SLOPe?, 21-7
SOURce?, 14-6, 15-6, 18-16, 18-43,

21-7, 22-14
SPResent?, 9-5
SSAVer AAFTer?, 11-9
SSAVer?, 11-9
SSCReen?, 6-7, 15-7, 17-16
SSUMmary?, 17-18
STATe?, 16-4
Status Byte (*STB?), 3-14
STATus?, 7-8, 7-13
STIMulus?, 19-14
SWAVeform?, 6-9, 15-10, 17-19
TBASe?, 18-48
TDRSkew?, 8-9
TEDGe?, 18-43
TER?, 4-15
Test (*TST?), 3-16
TEST?, 15-11, 17-20
TIME?, 7-6, 7-9
TITLe?, 17-21
TMAX, 18-44
TMIN, 18-45
TRIG HYSTeresis?, 21-4
TRIG LEVel?, 21-5
TVOLt?, 18-45

TYPE?, 22-15
UEE?, 4-15
UER?, 4-16
ULIMit?, 15-12
UNITs OFFSet, 8-10
UNITs?, 8-9, 20-8
VAMPlitude?, 18-46
VAVerage, 18-47
VERTical OFFSet?, 12-10
VERTical RANGe, 12-11
VMAX?, 18-49
VMIN?, 18-49
VPP?, 18-50
VRMS?, 18-51
VTIMe?, 18-51
VTOP?, 18-52
WAVelength?, 8-10
X1Position?, 14-6, 16-4
X1Y1source?, 16-5
X2Position?, 14-7, 16-5
X2Y2source?, 16-6
XDELta?, 16-6
XDISplay?, 22-15
XINCrement?, 22-16
XOFFset?, 23-4
XORigin?, 22-16
XRANge?, 22-17, 23-4
XREFerence?, 22-17
XUNits?, 16-7, 22-17
Y1Position?, 14-7, 16-7
Y2Position?, 14-8
YDELta?, 16-8
YDISplay?, 22-18
YINCrement?, 22-18
YOFFset?, 23-4
YORigin?, 22-19
YRANge?, 22-19, 23-5
YREFerence?, 22-19
YUNits?, 16-8, 16-9, 22-20

query
headers, 1-5
interrupt, 1-6, 1-15
response, 1-14
responses, formatting, 5-2

query error, 1-61
QYE Status Bit, 1-22

querying locked status, 9-2
question mark, 1-5
queue, output, 1-6
quotes, with embedded strings, 1-7
QYE bit, 3-4–3-5

R
RANGe, 8-7, 12-8, 19-7, 19-12, 20-6
RATE, 9-3, 19-3

RBIT, 21-6
*RCL (Recall), 3-8
real number definition, 1-7
RECall SETup, 4-12
receiving

common commands, 3-2
information from the instrument,

1-14
Recommend?, 7-10
recovery, clock, 9-2
REFerence, 20-6
register

save/recall, 3-8, 3-13
Standard Event Status Enable, 1-28

reliability of measured data, 1-20
remote

local code and capability, 1-18
programming basics, 1-2

remote screen capture, 10-5
representation of infinity, 1-45
Request Control (RQC) status bit, 1-22
Request Service (RQS)

default, 1-17
status bit, 1-22

Reset (*RST), 3-9
resetting the parser, 1-19
RESPonse, 19-4

CALibrate, 19-5
CALibrate CANCel, 19-5
CALibrate CONTinue, 19-6
HORizontal, 19-6
HORizontal POSition, 19-7
HORizontal RANGe, 19-7
RISetime, 19-8
TDRDest, 19-9
TDRTDT, 19-9
TDTDest, 19-10
VERTical, 19-11
VERTical OFFSet, 19-12
VERTical RANGe, 19-12

response
buffered, 1-46
data, 1-16
generation, 1-46

result state code, and SENDvalid, 18-42
RESults?, 18-38
retrieval and storage, 10-2
returning control to system controller,

1-19
revised commands, 1-56
rise time measurement setup, 18-2
RISetime, 18-41, 19-8
RMS voltage, and VRMS, 18-50
Root level commands, 4-2

AEEN, 4-2
ALER?, 4-3

Index-10

Index

AUToscale, 4-3
BLANk, 4-4
CDISplay, 4-4
COMMents, 4-5
CREE, 4-5
CRER?, 4-6
DIGitize, 4-6
LER?, 4-8, 4-9
LTEE, 4-9
LTER?, 4-10
MODel?, 4-10
MTEE, 4-8, 4-10
MTER?, 4-11
OPEE, 4-11
OPER?, 4-12
PRINt, 4-12
RECall SETup, 4-12
RUN, 4-12
SERial, 4-13
SINGle, 4-13
STOP, 4-14
STORe SETup, 4-14
STORe WAVEform, 4-14
TER?, 4-15
UEE, 4-15
UER?, 4-16
VIEW, 4-16

RPANnotation, 16-3
RQC (Request Control), 1-22

bit, 3-4–3-5
RQS (Request Service), 1-22

and *STB, 3-15
default, 1-17

RQS/MSS bit, 3-15
RRATe, 11-7
*RST (Reset), 2-17, 3-9
rules

of traversal, 1-39
of truncation, 1-38

RUN, 4-12
and GET relationship, 1-19

RUNTil, 6-5, 15-5, 17-9

S
sample programs

segments, 2-3
sample rate, number of points, 6-4
SAMPlers, 7-11
SAMPles?, 17-6
saturation, 11-9
*SAV (Save), 3-13
SAVE, 17-10, 23-3
save/recall register, 3-8, 3-13
SCALe, 8-8, 20-7

DEFault, 17-10

MODE, 17-11
SIZE, 14-4
SOURce?, 17-11
X1, 17-12
XDELta, 17-12
Y1, 17-13
Y2, 17-14

SCALe?, 18-28
SCOLor, 11-8
SCRatch, 18-41
screen captures, 10-5
SCReen HARDcopy AREA, 6-8, 13-2,

15-8, 17-17
SDONe?, 7-11
segments of sample programs, 2-3
selected device clear (SDC), 1-19
selecting multiple subsystems, 1-8
self test, 3-16
semicolon usage, 1-5
sending compound queries, 1-35
SENDvalid, 18-42
separator, 1-4
sequential and overlapped commands,

1-45
SERial (SERial number), 4-13
serial poll

(SPOLL) in example, 1-27
disabling, 1-19
of the Status Byte Register, 1-27

serial prefix, reading, 3-5
Service Request

code and capability, 1-18
sample program, 2-16

Service Request Enable
(*SRE), 3-13
Register (SRE), 1-27
Register Bits, 3-14
Register default, 1-17

setting
data rates, 9-2
horizontal tracking, 12-3
Service Request Enable Register bits,

1-27
Standard Event Status Enable Regis-

ter bits, 1-28
time and date, 5-8
TRG bit, 1-27
voltage and time markers, 16-2

setting up
for programming, 1-12
service request, 2-18
the instrument, 1-12

SETup, 5-7
setup

recall, 3-8
storing, 10-7

short form, 1-6
headers, 1-6
mnemonics, 1-38

signal present
conditions, 9-2
status, 9-5

SIMage, 10-5
simple command header, 1-4
SINGle, 4-13
SKEW AUTO, 7-12
SKEW, in CALibrate command, 7-12
SLOPe, 21-7
software version, reading, 3-5
SOURce, 14-4, 14-5, 15-5, 17-14, 18-16,

18-42, 21-7, 22-13
and measurements, 18-4
CGRade, 22-14

SOURce?, 17-11
spaces and commas, 1-4
spelling of headers, 1-6
SPOLL example, 1-27
SPResent?, 9-5
*SRE (Service Request Enable), 3-13
SRE (Service Request Enable Regis-

ter), 1-27
SSAVer, 11-9
SSCReen, 6-6, 15-6, 17-15
SSCReen AREA, 6-8
SSCReen IMAGe, 6-8
SSUMmary, 15-9, 17-18
Standard Event Status Enable Register

(SESER), 1-28
bits, 3-4
default, 1-17

Standard Event Status Register (ESR),
1-28

bits, 3-5
Standard Status Data Structure Model,

1-20
STARt, 7-5–7-6, 17-18
STATe, 16-3, 17-9
status, 1-16

of an operation, 1-20
registers, 1-16, 3-2
reporting data structures, 4-2

Status Byte (*STB), 3-14
Status Byte Register, 1-26

and serial polling, 1-27
bits, 3-15
default, 1-17

status reporting, 1-20
bit definitions, 1-21
data structures, 1-20
decision chart, 1-33

STATus, in CALibrate command, 7-13
STATus?, 7-6, 7-8

Index-11

Index

*STB (Status Byte), 3-14
STDDev?, 18-29
STIMulus, 19-13
STOP, 4-14
storage and retrieval, 10-2
STORe, 10-6

SETup, 4-14
WAVEform, 4-14

storing waveform, sample program,
2-15

string
alphanumeric, 1-7
variables, 1-15
variables, example, 1-15

SUBTract, 12-8
suffix

multipliers, 1-7, 1-36
units, 1-36

summary bits, 1-26
SWAVeform, 6-9, 15-9, 17-19
SWAVeform RESet, 6-10, 15-10, 17-20
syntax error, 1-60
System Commands, 5-2

DATE, 5-2
DSP, 5-2
ERRor?, 5-3
HEADer, 5-5
LONGform, 5-5
MODE, 5-6
SETup, 5-7
TIME, 5-8

system controller, 1-19
SYSTem SETup and *LRN, 3-6

T
talker

code and capability, 1-18
unaddressing, 1-19

TDR Commands, 19-2
PRESet, 19-3
RATE, 19-3
RESPonse, 19-4
RESPonse CALibrate, 19-5
RESPonse CALibrate CANCel, 19-5
RESPonse CALibrate CONTinue,

19-6
RESPonse HORizontal, 19-6
RESPonse HORizontal POSition, 19-7
RESPonse HORizontal RANGe, 19-7
RESPonse RISetime, 19-8
RESPonse TDRDest, 19-9
RESPonse TDRTDT, 19-9
RESPonse TDTDest, 19-10
RESPonse VERTical, 19-11
RESPonse VERTical OFFSet, 19-12

RESPonse VERTical RANGe, 19-12
STIMulus, 19-13

TDRDest, 19-9
TDRSkew, 8-8
TDRTDT, 19-9
TDTDest, 19-10
TEDGe, in MEASure command, 18-43
temperature and calibration, 7-2
TER? (Trigger Event Register), 4-15
termination of message during hard-

copy, 1-35
terminator, program message, 1-7
TEST, 15-11, 17-20
Test (*TST), 3-16
THReshold, and DEFine, 18-18
TIME, 5-8
time and date, setting, 5-2
time base

scale and number of points, 6-4
Time Base Commands, 20-2

BRATe, 20-2
POSition, 20-2
RANGe, 20-6
REFerence, 20-6
SCALe, 20-7
UNITs, 20-7

time buckets, and POINts?, 22-9
time information of waveform, 2-15
time scale, operands and functions,

12-2
TIME?, 7-6, 7-9
timing measurements, displaying, 14-2
TITLe?, 17-21
TMAX, 18-44
TMIN, 18-45
TOPBase, and DEFine, 18-18–18-19
transferring waveform data, 22-2

sample program, 2-13
transmission mode, and FORMat, 22-7
traversal rules, 1-39
tree traversal

examples, 1-45
rules, 1-39

*TRG (Trigger), 3-15
TRG (Trigger Event Register), 1-27

bit, 3-14–3-15
bit in the status byte, 1-27
Event Enable Register, 1-22

Trigger (*TRG), 3-15
status bit, 1-22

TRIGger Commands
DCDRatio, 21-3
DCDRatio AUTodetect, 21-4
PLENgth, 21-5
PLENgth AUTodetect, 21-5
PLOCk, 21-6

PLOCk AUTodetect, 21-6
RBIT, 21-6

Trigger Commands, 21-2
ATTenuation, 21-2
BWLimit, 21-3
GATed, 21-4
HYSTeresis, 21-4
LEVel, 21-5
SLOPe, 21-7
SOURce, 21-7

Trigger Event Register (TRG), 1-27
trigger status, 9-3
truncating numbers, 1-7
truncation rule, 1-38
*TST (Test), 3-16
TVOLt?, 18-45
TYPE?, 22-15

U
UEE (User Event Enable register), 4-15
UER, 1-29
UER? (User Event Register), 4-16
ULIMit, 15-11
unaddressing all listeners, 1-19
unavailable commands, Jitter mode,

1-58
UNITs, 8-9, 20-7

ATTenuation, 8-9
OFFSet, 8-9

uppercase, 1-6
headers, 1-6
letters and responses, 1-7

URQ bit (User Request), 3-3
User Event Enable register, 4-15
User Event Register, 1-29, 4-16
User Request (URQ) status bit, 3-4
User Request Bit (URQ), 3-3
user-defined measurements, 18-2
USR bit, 3-14–3-15

V
VAMPlitude, 18-46
VAVerage, 18-47
VBASe, 18-48
version of software, reading, 3-5
VERSus, 12-9
VERTical, 7-9, 12-9, 19-11

OFFSet, 19-12
RANGe, 19-12

vertical
axis control, 8-2
axis offset, and YRANge, 23-4
axis, full-scale, 8-7
scaling and functions, 12-2
scaling, and YRANge, 23-5

Index-12

Index

vertical calibration, 7-7
VERTical OFFSet, 12-10
VERTical RANGe, 12-11
VIEW, 4-16
VIEW and BLANk, 4-4
VMAX, 18-48
VMIN, 18-49
voltage

at center screen, 8-5
measurements, displaying, 14-2
of waveform, 2-15

VPP, 18-50
VRMS, 18-50
VTIMe?, 18-51
VTOP, 18-52

W
W, and DATA, 22-6
*WAI (Wait-to-Continue), 3-16
Wait-to-Continue (*WAI), 3-16
waveform

data and preamble, 22-2
SOURce and DATA, 22-5
storing, 10-7
storing time and voltage, 2-15
time and voltage information, 2-15

Waveform Commands, 22-2
BANDpass?, 22-4
BYTeorder, 22-4
COUNt?, 22-5
DATA, 22-5
FORMat, 22-7
POINts?, 22-9
PREamble, 22-9
SOURce, 22-13
SOURce CGRade, 22-14
TYPE?, 22-15
XDISplay?, 22-15
XINCrement?, 22-16
XORigin?, 22-16
XRANge?, 22-17
XREFerence?, 22-17
XUNits?, 22-17
YDISplay?, 22-18
YINCrement?, 22-18
YORigin?, 22-19
YRANge?, 22-19
YREFerence?, 22-19
YUNits?, 22-20

Waveform Memory Commands, 23-2
DISPlay, 23-2
LOAD, 23-2
SAVE, 23-3
XOFFset, 23-3
XRANge, 23-4

YOFFset, 23-4
YRANge, 23-4

waveform memory, and DATA, 22-5
waveform type

and COUNt?, 22-5
and TYPE?, 22-15

WAVeforms?, 17-6
WAVelength, 8-10
white space (separator), 1-4
WINDow

BORDer, 14-5
DEFault, 14-5
SOURce, 14-5
X1Position, 14-6
X2Position, 14-7
Y1Position, 14-7
Y2Position, 14-8

WORD and FORMat, 22-8

X
X vs Y, 12-9
X1, 17-12
X1Position, 14-6, 16-4
X1Y1source, 16-5
X2Position, 14-7, 16-5, 16-8
X2Y2source, 16-6
x-axis

controlling, 20-2
duration, and XRANge?, 22-17
offset, and XOFFset, 23-3
range, and XRANge, 23-4
units, and XUNits, 22-17

XDELta, 17-12
XDELta?, 16-6
XDISplay?, 22-15
XINCrement?, 22-16
XOFFset, 23-3
XORigin?, 22-16
XRANge, 23-4
XRANge?, 22-17
XREFerence?, 22-17
XUNits, 16-7
XUNits?, 22-17

Y
Y1, 17-13
Y1Position, 14-7, 16-7
Y2, 17-14
Y2Position, 14-8
YALign, 17-21
Y-axis control, 8-2
YDELta?, 16-8
YDISplay?, 22-18
YINCrement?, 22-18
YOFFset, 23-4

YORigin?, 22-19
YRANge, 23-4
YRANge?, 22-19
YREFerence?, 22-19
YSCale, 11-5
YUNits, 16-8
YUNits?, 22-20

Z
ZLEVel, 18-17

